

Low-cost PLC

CUSB
TM

User Manual
Version 2.1

“Everything for Embedded Control”

Comfile Technology Inc.
www.comfiletech.com

Manual Version 2.1 (revised July 2006)
Copyright 1996,2006 Comfile Technology©

 1

 2

Manual Revisions
Changes to v2.1 from v2.0

- Updated Product Specifications for CUBLOC and CuTOUCH

- Changed the name “Relays” to “Registers” for Ladder Logic

- Changed the name “Name” to “Port”

- Changed the name “Pin” under commands to “Port”

- Clarification:

“Pin” is for actual pin number of the chip itself.

E.g. Pin 1 is SOUT.

“Port” is for Port numbers when using Commands.

E.g. out 0, 1 ‘Output logic LOW to Port 0 or P0

P0 = Port 0, NOT Pin 0

- MODBUS Protocol names changed to MODBUS standard names:

Previous Term New Term

Bit Read 01 -> ReadCoilStatus

Bit Read 02 -> ReadInputStatus

Word Read 03 -> ReadHoldingRegisters

Word Read 04 -> ReadInputRegisters

Bit Write 05 -> ForceSingleCoil

Word Write 06 -> PresetMultipleRegisters

Multiple Bit Write 15 -> ForceMultipleCoils

Word Write 06 -> PresetMultipleRegisters

Multiple Word Write 16 -> PresetMultiple Registers

- I2C

- More About Interrupts Section Added

- More about I²C Section Added

- MODBUS RTU Master Updated

- MODBUS RTU Slave Added

- Appendix H for MODBUS RTU Added

 3

Warranty

Comfile Technology provides 1 Year warranty on its products against defects in

materials and workmanship. If you discover a defect, Comfile Technology will, at its

option, repair, replace, or refund the purchase price. Simply return the product with a

description of the problem and a copy of your invoice (if you do not have your invoice,

please include your name and telephone number).

This warranty does not apply if the product has been modified or damaged by accident,

abuse, or misuse.

30-Day Money-Back Guarantee

If, within 30 days of having received your product, you find that it does not suit your

needs, you may return it for a refund. Comfile Technology will refund the purchase

price of the product, excluding shipping/handling costs. This does not apply if the

product has been altered or damaged.

Copyright & Trademarks

Copyright © 2006 by Comfile Technology Inc. All rights reserved. CUBLOC™ is a

registered trademark of Comfile Technology Inc. WINDOWS is a trademark of

Microsoft Corporation. XPORT is trademark of Lantronix inc. Other trademarks are of

their respective companies.

Notice

This Data Book may be changed and updated without notice. For the addition of new

features, information can be updated without notice. Comfile Technology Inc. is not

responsible for any actions taken outside the explanation of this data book. This

product is protected by patents across the world. You may not change, copy,

reproduce, or translate without the consent of Comfile Technology Inc.

Disclaimer of Liability

Comfile Technology Inc. is not responsible for special, incidental, or consequential

damages resulting from any breach of warranty, or under any legal theory, including

lost profits, downtime, goodwill, damage to or replacement of equipment or property,

and costs or recovering, reprogramming, or reproducing any data stored in or use with

Comfile Technology products.

 4

Preface

Comfile Technology has been developing PLC and BASIC controllers since
1997. With our past knowledge of this field, we are giving you a brand new
product that is more powerful, flexible, and has the best features of both
BASIC controllers and PLCs (Programmable Logic Controllers).

After experiences developing and selling TinyPLC and PicBASIC, which are
PLCs and chip based BASIC controllers, we have been able to improve our
engineering efforts every year. CUSB is able to adapt to the user’s
strengths, whether that be BASIC or LADDER. Unlike other products, you
have the option of programming the CUSB w/ Ladder Logic OR BASIC
language.

Ladder Logic, which is the traditional way of programming PLCs for its
outstanding control sequence, is neither sufficient nor easy to use for
graphic interface and other modern technology that require complex
programming. In comparison, the BASIC language proves to be simple yet
easy to implement those modern devices.

CUSB is able to handle both BASIC and Ladder Logic through on-chip multi-
tasking. By sharing memory data, it’s able to integrate both BASIC and
LADDER efficiently and become a new type of controller by itself.

“CUSB” is created for beginners and advanced PLC users in mind. Its basic
purpose is to cut development time for the developer and also allow for low-
cost alternatives to over-priced PLCs on the market today.

Comfile Technology, Inc.

 5

Notice

The Start Kit or Industrial Kit you receive comes with the latest version of
Cubloc Studio.

 Please be aware that the software may be upgraded often.
 Please check www.comfiletech.com to download the latest version of

CublocStudio.
 Please do Setup->Firmware Download after installing new version of

CublocStudio as firmware of the modules is upgraded along with our
software. (Firmware is comes automatically along w/ your new
version of CublocStudio.

 Please check www.comfiletech.com often for latest Manual.
 Please make sure to insert the CUBLOC module correctly as inserting it

upside-down can cause damage to the chip.
 Please be aware that our 1 Year Warranty only covers defective items.

Special thanks goes to:

Mr. Alexandre Braun & Lextronics for applications on the Forum
Mr. Batman for applications on the Forum

Mr. Mauro Russo & Uniplan Software srl, Italy for User Manual Revisions

Mr. Steve Yang & Mr. Bill Ebert for Modbus RTU

Mr. Spence for website links and website bugs

http://www.comfiletech.com/
http://www.comfiletech.com/

 6

Table of Contents

CHAPTER 1 CUSB GETTING STARTED… ..13

What is CUSB? ... 14
CUSB Specifications .. 15
Ladder Logic and BASIC .. 18
Multi-tasking of Ladder Logic and BASIC ... 20
Development Environment .. 22
Download and Monitoring through the Internet................................ 23
Hints for traditional PLC User ... 24
Hints for Microcontroller User... 25
CUSB’s Internal Structure.. 26
Peripherals... 27

CHAPTER 2 HARDWARE..29

CUSB-22D Close-up.. 30
CUSB-22R Close-up .. 31
CUSB-30R Close-up .. 32
CUSB-22D I/O MAP & Dimensions .. 33
CUSB-22R I/O MAP & Dimensions... 34
CUSB-30R I/O MAP & Dimensions... 35

CHAPTER 3 CUSB WIRING...37

Connecting Power to CUSB- 22R,30R, and 36R................................ 38
Connecting Power to CUSB-22D... 39
Keypad Controller Connection .. 40
Comfile LCD Connection .. 40
CUSB Digital Input Schematic .. 41
Connecting an NPN Proximity Sensor .. 42
Connecting an PNP Proximity Sensor... 43
CUSB Digital (Relay) Output Schematic... 44
CUSB Digital Input/Output Test.. 45
CUSB Analog Input Schematic ... 46

CHAPTER 4 CUBLOCSTUDIO EDITOR/ COMPILER...47

CUBLOC STUDIO Basics .. 48
Creating BASIC .. 50
Debugging ... 51
Menus ... 52

 7

CHAPTER 5 LADDER LOGIC ...55

LADDER Basics..56
Creating LADDER...58
Editing LADDER Text..60
Monitoring ..64
Time Chart Monitoring ...65
WATCH POINT ..66
Register Expression ...71
Ladder symbols...73
Using I/Os ..75
Use of Aliases..76
Beginning of LADDER...77
Declare devices to use ...77
To Use Ladder Only, without BASIC...78
Enable Turbo Scan Time Mode..79
Things to Remember in LADDER ...80
ladder instructions ...83
LOAD,LOADN,OUT...85
NOT, AND,OR..86
SETOUT, RSTOUT..87
DIFU, DIFD...88
MCS, MCSCLR...89
STEPSET...91
STEPOUT..92
TON, TAON...93
TOFF, TAOFF...94
CTU ...95
CTD ...95
UP/DOWN COUNTER..96
KCTU ...97
KCTD ...97
Comparison Logic ..98
How to store Words and Double Words ..99
Binary, Decimal, Hexadecimal...100
WMOV, DWMOV..101
WXCHG, DWXCHG...102
FMOV...103
GMOV ..104
WINC, DWINC, WDEC, DWDEC...105
WADD, DWADD...106
WSUB, DWSUB ...106

 8

WMUL, DWMUL ...107
WDIV, DWDIV...108
WOR, DWOR...109
WXOR, DWXOR...110
WAND, DWAND...111
WROL, DWROL..112
WROR, DWROR...113
GOTO, LABEL ..114
CALLS, SBRT, RET ...115
INTON..116
Special Registers ...117

CHAPTER 6 CUBLOC BASIC LANGUAGE ..119

CUBLOC BASIC Features ..120
Simple BASIC program ..122
Sub and Function...123
Variables ..129
String...130
About Variable Memory Space ..133
Arrays ..134
Bits and Bytes modifiers...135
Constants ...137
Constant Arrays... ...138
Operators ...140
Expressing Numbers in Bits ..143
The BASIC Preprocessor...144
Conditional..146
To use LADDER ONLY...149
To use BASIC ONLY ...149
Interrupt...150
More about Interrupts…..151
Pointers using Peek, Poke, and Memadr152
Sharing Data...153

CHAPTER 7 CUBLOC BASIC FUNCTIONS..155

Math Functions..156
Type Conversion..158
String Functions ..159

CHAPTER 8 CUBLOC BASIC STATEMENTS & LIBRARY..................................163

Adin()..164
Alias...166

 9

Bcd2bin..167
Bclr..168
Beep ..169
Bfree() ..170
Bin2bcd..170
Bin2bcd..171
Blen()..172
Bytein()...173
Byteout ..174
CheckBf() ..175
Count() ...176
Countreset..178
Dcd..179
Debug..180
Decr...183
Delay ...184
Do...Loop ...185
Dtzero..186
Eeread()..187
EAdin()..188
Eewrite...190
Ekeypad ...191
For...Next ...192
Freqout ..193
Get()...195
Getstr() ...196
Geta...197
Gosub..Return...198
Goto ..198
High...199
I2Cstart..200
I2Cstop ..200
I2Cread() ..201
I2Cwrite()..201
If..Then..Elseif…Endif ...202
In()...203
Incr..204
Input..205
Keyin ...206
Keyinh..206
Keypad...207
Ladderscan ...208

 10

Low..209
Memadr() ..210
Ncd..211
Nop..212
On Int ..213
On Ladderint Gosub...214
On Pad Gosub ...216
On Recv1..217
On Timer()..218
Opencom..219
Out ..221
Output..222
Outstat() ...223
Pause...223
Peek() ...224
Poke...224
Pulsout ...225
Put...226
Putstr ...227
Puta ...228
Pwm...229
Pwmoff...230
Ramclear ..231
Reverse..232
Rnd() ..233
Select...Case...234
Set Debug ..235
Debug Command How-to ...235
Set I2c ...238
Set Ladder on/off ..239
Set Modbus...240
Set Pad ..241
Set Rs232...244
Set Until ...245
Set Int..246
Set Onglobal ...247
Set Onint ..248
Set OnLadderint ..249
Set Onpad ..250
Set Onrecv..251
Set Ontimer ..252
Shiftin()...253

 11

Shiftout ..254
Sys()...255
Tadin()...256
Udelay..257
Usepin..258
Utmax..259
WaitTx ...260

CHAPTER 9 CUBLOC DISPLAY LIBRARY ...261

Cls ...266
Csron ...266
Csroff...266
Locate..266
Print...266
CLCD Module ..267
GHLCD Graphic LCD : GHB3224 Series..270
Cls ...273
Clear..273
Csron ...273
Csroff...273
Locate..273
Print...274
Layer ...274
GLayer ...275
Overlay ..275
Contrast ...275
Light ..276
Font ...277
Style ..278
Cmode ...279
Line ...279
Lineto...279
Box..279
Boxclear ...280
Boxfill...280
Circle ...280
Circlefill ..281
Ellipse ..281
Elfill..281
Glocate...281
Gprint ..282
Dprint ..282

 12

Offset...283
Pset ...284
Color ..284
Linestyle...284
Dotsize ...284
Paint ..285
Arc...285
Defchr ..285
Bmp...286
Gpush ..287
Gpop..287
Gpaste ...288
Hpush ..289
Hpop..289
Hpaste ...289
Seven Segment Display : CSG Series ..291
Csgdec ...292
Csgnput..293
Csgxput..294
Csgdec ...294
Csghex...294

CHAPTER 10 INTERFACE..295

CuNET..297
About I2C…...299
More About I²C… (Advanced)..303

CHAPTER 11 MODBUS..307

About MODBUS…...308
Error Check...317
MODBUS ASCII Master Mode ..318
MODBUS ASCII Slave Mode..319
MODBUS RTU Master Mode...320
MODBUS RTU Slave Mode ..321

APPENDIX...326

Appendix A. ASCII CODE..327
Appendix B. CUBLOC BASIC Command summary..........................328
Appendix C. MODBUS RTU Include Files...339

 13

Chapter 1
CUSB

Getting
started…

What is CUSB?

CUBLOC is different from the traditional PLCs that you may associate with.
Traditional PLCs have cases and connections like the picture below but
CUBLOC is an “On-Chip” PLC/Industrial Controller, meaning you have more
freedom and flexibility to the final product size and design.

CUBLOC Modules are similar to traditional PLCs in that Ladder Logic can be
used. But its small size allows developers to design custom PCBs just like a
microcontroller.

There are different models, each with a unique number of I/O ports. Please
make a selection based on your product’s requirement.

 14

 15

CUSB Specifications

Model CuSB-22D CuSB-22R CuSB-30R CuSB-36R

Processor CB280
Program
Memory
(Flash)

80KB

Data Memory
(RAM) 2KB(BASIC)+1KB(Ladder Logic)

EEPROM 4KB
BASIC

Execution
Speed

36,000/sec

Ladder Scan
Time 10ms (Turbo-mode: ~100µsec)

- 2 High-speed hardware independent serial ports (Channel 0 & 1: RS232C 12V) Serial Ports for
Communicatio

n - Configurable Baud rates: 2400 to 230,400 bps

Digital Inputs 11 Opto-Isolated (5 to 24V DC / Min 10mA) 16 Opto-Isolated (5 to
24V DC / Min 10mA)

Digital Outputs 10 Opto-Isolated Relays (Max. Voltage per Relay:
5A @ 250VAC or 5A @ 30VDC)

6 Opto-Isolated Relays
(Max. Voltage per Relay:
6A @ 250VAC or 6A @

30VDC)

16 Opto-Isolated Relays
(Max. Voltage per Relay:
5A @ 250VAC or 5A @

30VDC)

Analog Inputs 6 Channel 10-bit ADCs, Configurable Input Voltage: 0 to 5V or 0 to 10V
Analog
Outputs 6 Channels 16-bit PWMs (DAC) (0 to 5V)

Counters 2 Channel 16-bit High Speed Counters for 7.5 to 24V DC Pulse Input (up to 2Mhz)
Timer 1 User Configurable Timer, Configurable Interval Units = 10ms

Required Power: DC
20 to 28V

Required Power: 85 to
264VAC

- Required Power: 85 to
264VAC

- Required Power: 85 to
264VAC

- Current
Consumption w/ ports
unloaded:

- Current Consumption
w/ ports unloaded:

- Current Consumption w/
ports unloaded:

- Current Consumption w/
ports unloaded:

 @ 24VDC: 30mA @ 100VAC: 33mA @ 100VAC: 33mA @ 100VAC: 40mA

- Isolated External 5
VDC
Output: 5V/600mA

 @ 200VAC: 26mA @ 200VAC: 26mA @ 200VAC: 32mA

 - Isolated External 5 and
24 VDC Outputs:

- Isolated External 5 and
24 VDC Outputs:

- Isolated External 5 and
24 VDC Outputs:

Power

 5V/500mA, 24V/300m
A

 5V/500mA, 24V/300m
A

 5V/1000mA, 24V/500m
A

Insulation-
Resistance Input & Output & Input FG: DC500V, 100MΩ, Cut-off current: 10mA, 1Min

-Input &
Output: AC500V 1Mi
n

-Input & Output: AC2000V 1Min

 * Cut Off Current:
10mA, DC500V
100MΩ

 * Cut Off Current: 10mA, DC500V 100MΩ

- Input FG: AC500V
1Min - Input FG: AC1500V 1Min

 * Cut Off Current:
10mA, DC500V
100MΩ

 * Cut Off Current: 10mA, DC500V 100MΩ

 - Output FG: AC500V 1Min

Withstanding-
Voltage

 *Cut Off Current: 10mA, DC500V 100MΩ

Vibration 10~50Hz at 2G during 3 minute period, 30 minutes along X,Y and Z axis
Impact 10G for 20mS, Once on each X,Y and Z axis
Keypad Plug-N-Play Keypad Controller Support

CuNET, I2C
Support Yes

Din-Rail Mount Yes
LCD Plug-N-Play LCD Support

Operating
Temp.

-10˚ C to 50˚ C (10% to 95% RH Non-Condensing)

Storage Temp. -10˚ C to +70˚ C (10% to 95% RH Non-Condensing)

RCABLE Headers: (2.5mm pitch) RCABLE Headers: (2.5mm
pitch) Package

2 7-pin, 1 6-pin, 1 4-pin, 1 3-pin, 1 2-pin 1 6-pin, 1 4-pin, 3 3-pin
3.34 x 4 x 1.8" (85 x

103 x 45.5mm)
3.34 x 4 x 2" (85 x 104 x

51.5mm)
3.34 x 4 x 2" (85 x 104 x

51.5mm)
4.7 x 4.3 x 2.01" (120 x

109 x 51.5mm) Size & Weight
203.5g 227g 227g 301g

The main advantage of CUSB over other PLCs is that it fills Ladder Logic’s
weaknesses with BASIC language. Ladder Logic is good enough to replace
sequence diagrams, but to collect data, print graphics, and process complex
tasks is asking a little bit too much. That is why we added the BASIC
language. You can now run both Ladder Logic and/or BASIC!

Another advantage over other BASIC processors is that CUSB is able to
separate the amount of work and programming between Ladder Logic and
BASIC as necessary. The user is able to debug easier by having two
processes work together, instead of grudging through lines of BASIC codes.

DIM A AS INTEGER
IF IN(0) = 0 THEN
 OUT 2,A
END IF
GOTO LAB1

LADDER LOGIC BASIC

 16

Picture of “CUBLOC Studio”, main development software for CUSB, is shown
above.

There are PLCs on the current market that supports both LADDER and
BASIC. These PLCs do not multi-task and run “Single-task.” BASIC is part
of their Ladder Logic and does not run independently like CUSB. This can
prove to be costly since BASIC is not real-time oriented and can affect the
Ladder Logic of the program. CUSB covers these weaknesses through its
multi-tasking features, guaranteeing accuracy and precision of timing.
Unlike many BASIC processors on the market today, CUSB supports Ladder
Logic and multi-tasking with BASIC language.

CUSB has a multi-tasking structure that runs BASIC and LADDER
simultaneously that allows accurate LADDER scan timing and still process
BASIC. You even have a choice of simply using BASIC or LADDER by itself.

LADDER

LADDER
LADDER

BASIC
BASIC

BASIC

SINGLE TASK MULTI TASK

CUSB is a brand new type of industrial controller. By being able to do
things that traditional PLCs couldn’t through BASIC language, we have
expanded the horizons of both PLCs and BASIC micro-computers.

With 32-bit IEEE floating point math support and MODBUS ASCII/RTU
support, the user will find that CUSB is one of the most versatile BASIC/PLC
hybrid PLCs on the market today.

 17

Ladder Logic and BASIC

The biggest advantage of Ladder Logic is that all circuits are processed in
“Parallel,” meaning they are all processed at the same time.

P0

P5

P3

P2

P6

P9

P8

A

B

As you can see above, both A and B circuits are in a waiting state, ready to
turn output On as soon as input is turned On. For example, if input P3
turned On, P9 would turn On.

In comparison, BASIC processes code in order, a type of “Sequential
Processing.”

 Dim A As Integer

 Dim B As Integer

 A = 0

Again:

 For B=0 to 10

 Debug DEC A,CR

 A = A + 10

 Next

 Goto Again

Loop

Jump

These 2 types of programming languages have been used in different fields
for a long time. Ladder Logic is used in automation controllers such as
PLCs. On the other hand, BASIC and other programming languages such
as C and Assembly have been used in PCs and MCUs.

Whether you are an experienced MCU or PLC user, you will be able to
benefit by integrating both BASIC and Ladder Logic in your designs.

 18

 19

The biggest advantage that Ladder Logic possesses is the ability to process
input within a guaranteed slot of time. No matter how complex the circuit
becomes, Ladder Logic is always ready to output when it receives input.
This is the main reason why it’s used for machine control and other
automation fields.

Ladder Logic is more logic oriented, not a complete programming language.
To do complex processes, it has its limits. For example, to receive input
from a keypad, display to 7 Segment or LCD, and process user’s input is a
daring task for Ladder Logic.

But these things are rarely a problem for programming languages such as
BASIC. BASIC is able to process floating point numbers, data
communications, and other things beyond the scope of what Ladder Logic
can do alone. Another advantage that BASIC has is that its language is
very similar to the English language (IF, GOTO, etc…), allowing the
beginners and the developers to learn in matter of hours, instead having to
deal with months of learning curves.

 Ladder Logic Programming Languages
(BASIC, C, ASM)

Device PLC PC or Micro-Computer
Application Automation, Machine-

Control
General Computing

Advantages Sequencer, Bit Logic,
Timers, Counters

Complex Math,
Data Communication,
Data Collection & Process, Analysis,
Graphic Interface

Basic
Mechanism

Parallel Sequential

Ladder Logic’s parallelism and BASIC sequential language both have its
advantages over each other. Ladder Logic is able to process what couldn’t
be done with BASIC. On the other hand, BASIC can easily process what is
either hard to do or couldn’t be done in Ladder Logic.

That is why we created “CUSB,” which the user is free to use both Ladder
Logic and/or BASIC based on the application being created. After
understanding the advantages of both Ladder Logic and BASIC, the user will
be able to create more efficient final products while saving development
time and costs.

Multi-tasking of Ladder Logic
and BASIC

There are many ways to implement both BASIC and Ladder Logic in one
processor. The current products on the market use BASIC as part of
Ladder Logic. These products support BASIC and Ladder Logic but there is
one clear weakness.

P0 P1 Print "Setting Mode"
A = A + 1
B = B +1
RETURN

FUNC #1

FUNC #1

The first weakness is that based on the execution time of BASIC, Ladder
Logic also gets affected. If the BASIC code is made up of an infinite loop,
Ladder Logic will also stop.
Ladder Logic’s main advantage is that it can process input in a guaranteed
scan-time. If Ladder Logic cannot process within this guaranteed scan-time
because of BASIC, it might be better to not include BASIC capabilities.

The second weakness is that BASIC can only be used as part of Ladder
Logic. BASIC is a powerful language by being able to process complex
algorithms. But if we can only use BASIC as part of Ladder Logic, we are
not fully using BASIC to its maximum performance.

The third point has to do with I/Os. BASIC language’s execution of I/Os
can create unwanted collisions with LADDER. The reason is that Ladder
Logic I/Os are updated while in BASIC, I/Os are directly accessed.

After solving these problems, we have created a BASIC and Ladder Logic
processor that supports real-time “multi-tasking.” BASIC runs BASIC and
LADDER runs LADDER, simultaneously without causing collision between the
each other.

 20

With just BASIC, you will be able to create many devices. In comparison to
other BASIC processor on the market today, CUBLOC BASIC clearly has
faster processing speed and the upper hand on the main features. If
Ladder Logic is not necessary, the user may use just BASIC.

In the case of I/Os, the user can specifically control the I/Os used by BASIC
and LADDER, thereby eliminating I/O collision problems.

CUSB uses BASIC as its main language. We recommend controlling
LADDER from BASIC.

For example, there is a MASTER CONTROL feature in Ladder Logic, allowing
the user to set Control Zones. Control Zones are sections within the Ladder
Logic that the user can set entire sections of the control circuit. With the
MASTER CONTROL feature, the user can enable/disable Ladder Logic’s
Control Zones easily.

If A=1 THEN _M(1) = 1

If B=1 THEN _M(1) = 0

P0

M1

P3

P2 P9

MCS 0

MCSCLR 0

In BASIC, the user may read or write to Ladder Logic’s data memory.
In the above example, you can access Register M1 as _M(1) and write to it
from BASIC.

As you can see, CUBLOC supports BASIC and LADDER multi-tasking
simultaneously through “data memory sharing.”

 21

Development Environment
To use CUSB, the user may use a Windows XP, 2000, or 98 operating
system equipped computer. If you would like to use it in
Linux/Unix/Macintosh environment, you will need to install a virtual machine
software of some type (such as VMware, etc…) that allows Windows
operating system to run on it.
An RS232 port is also required or you may use a USB-to-RS232C converter.
Download and Monitoring is possible when connected with the PC.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

Rx

Tx

DTR

GND

1

2

3

4

5

6

7

8

9

RS232

When CUSB is disconnected from the PC, it goes into a STAND-ALONE state.
The main program is stored in CUBLOC’s flash memory, and will be retained
even with no power. The user may download new programs and erase
them as many times as he or she wishes.

CUSB Ready for Programming w/ a serial cable

 22

Download and Monitoring
through the Internet

XPORT is an internet module that converts RS232 signals into TCP or UDP
packets. You can use XPORT and CUSB to download and monitor programs
through the internet.

By using this feature, you will be able to update and provide customer
service for your products even if it’s located in other parts of the world. We
provide custom XPORT firmware, Downloading/Monitoring Server programs
and embeddable applets for downloading and monitoring your CUSB. You
may use this program to manage thousands of devices.

Please refer to our CUBLOC Forum on our homepage for application notes.
(http://www.cubloc.com)

XPORT module

Monitoring/Download Server Program for multiple XPORTs

 23

http://www.cubloc.com/

Hints for traditional PLC User

For users with much experience in traditional PLCs, they will find BASIC a
completely new language. CUSB is a PLC with BASIC language capabilities
added. The user may program only using the ladder language.
By having the option of using the BASIC language, even the PLC user may
be able to incorporate new features to the final product by making use of
BASIC, which has much powerful capability and flexibility in communicating
with other devices than PLCs.

To use CUSB, the user does not have to know BASIC. He/She may simply
use only LADDER for development. If the user does not require LCD
display or keypad usage, he or she does not need to use BASIC at all.

As you can realize, more emphasis on user interface is becoming apparent
in our industrial world. CUSB is able to overcome the deficiencies and
disadvantages of traditional PLCs by being able to use both BASIC and
LADDER language.

DISPLAY

MACHINE CONTROL

KEYPAD

PC INTERFACE

We provide many BASIC libraries for user interfaces which you can simply
copy & paste to achieve the user interface structure desired.

 24

Hints for Microcontroller User

MCU, Micro Controller Unit, is programmable micro-computers such as PIC,
AVR, and 8051. For mass-production, MCUs can cut costs and reduce the
overall product size. But the main disadvantage of MCUs is that it is hard
to develop and takes a long time. For simple projects, this might be a good
route.

Even those experienced engineers feel that MCU programming is time-
consuming and not a simple task. To make a final product, it takes many
hours programming and debugging with an MCU. Even after development,
if bugs arise, it becomes almost impossible to update the MCU.

In comparison, Comfile’s CUSB will cut the users development time as much
as 20 times and provide a MCU-like chip that is upgradeable through RS232
cable or even through the internet by using an XPORT. By being able to
provide a way to upgrade the final product, the value of your final product is
much more than what you thought.

If you have experience programming with MCUs, we guarantee you that
development of your final product will be much easier. You will be able to
spend more time designing the features of your final product, instead of
spending hours and hours in front of a computer.

 25

CUSB’s Internal Structure

BASIC
Interpreter

LADDER
Processor

BASIC
Program Memory

LADDER
Program Memory

BASIC
Data Memory

LADDER
Data Memory

I/O Ports

SRAM
2KB~24KB

SRAM
1KB~4KB

FLASH
80KB

FLASH
80KB

3

5

4 1 2

The BASIC interpreter contains a “Flash memory” for user’s BASIC
programs. LADDER processor also has a “Flash memory” for user’s LADDER
program. I/O ports are shared among BASIC and LADDER, allowing free
access to both.

BASIC data Memory can only be accessed by BASIC interpreter while
LADDER data memory can be accessed by both BASIC Interpreter and
LADDER Processor.

BASIC program memory(1) and LADDER(2) share the same Flash Memory.
The total available memory space is 80KB. BASIC can use the whole
memory or LADDER may use the whole memory. As long as the BASIC
and LADDER program total is within 80KB, the user is free to program as
he/she wills. (CB2XX series allow 80KB; future models will have more
memory)

I/O ports (5) can be used both by BASIC and LADDER. The user must
specify I/O ports to use in LADDER and BASIC. All I/O ports can be used in
LADDER or BASIC.

 26

 Peripherals

LCD DISPLAY Module
(CLCD, GHLCD Series)
Various LCD displays are provided for use with CUSB using CUNET (I2C)
protocol. With one line commands (PRINT, CLS, etc…), you can easily start
printing to the LCD without hassling with complex lines and commands.

CUNET is especially engineered for CUSB, therefore, we recommend to use
CUNET supported LCDs for quick and easy development.
Our Graphic Display GHLCD allows you to download Black and White BMP
images from your computer and store it in its memory.

 27

7 Segment Display Modules (CSG Series)

7 Segment display, modules can be easily implemented using CUSB’s I2C
protocol and native commands.

We are constantly upgrading and developing new peripherals for CUSB core
modules. Please check out our website www.comfiletech.com often for these
updates.

 28

 29

Chapter 2
Hardware

CUSB-22D Close-up

 30

CUSB-22R Close-up

 31

CUSB-30R Close-up

 32

 CUSB-22D I/O MAP &
 Dimensions
(units: mm)

 33

CUSB-22R I/O MAP &
 Dimensions
(units: mm)

 34

CUSB-30R I/O MAP &
 Dimensions
(units: mm)

 35

 36

CUSB-36R I/O MAP &
 Dimensions
(units: mm)

 37

Chapter 3
CUSB

Wiring

Connecting Power to CUSB-
22R,30R, and 36R

Connect AC Power cable to FG (Frame Ground) , N (Neutral), and L as

shown in above diagram to your CUSB.

 38

Connecting Power to CUSB-22D

Please connect DC 24V to DC24 + and - on the bottom stack of the CUSB-

22D.

 39

Keypad Controller Connection

Connect to Label, “Keyboard” on the top stack of CUSB

Comfile LCD Connection

Connect to Label, “CuNET” on the top stack of CUSB

 40

CUSB Digital Input Schematic

The diagram above shows how you can use the 24V internal power source
to connect to digital inputs. The CUSB will read Logic HIGH from 5 to
24VDC and Logic LOW from 0 to 2.4VDC. You can use TTL 5V, 12V, or 24V
sensors with ease.

 41

Connecting an NPN
Proximity
Sensor

(Digital Input Schematic)

(Connections)

 42

Connecting an PNP
Proximity
Sensor

(Digital Input Schematic)

(Connections)

 43

CUSB Digital (Relay)
Output Schematic

The diagram above shows how you can use the Connect AC or DC device to
the relays on-board the CUSB.

 44

CUSB Digital Input/Output Test

 45

CUSB Analog Input Schematic

When SW3 is turned ON on the CUSB, AD input range changes to 0 to 10V.
*Factory default for SW3 if OFF.

 46

 47

Chapter 4
CublocStudio

Editor/
Compiler

*CublocStudio is used to program the CUSB series.

CUBLOC STUDIO Basics

After installing CUBLOC STUDIO and executing it, you will see the following
screen.

You will see that at first CUBLOC STUDIO will be in TEXT EDITOR Mode.

If you press F2, the screen will change to LADDER EDITOR Mode and if you
press F1, it will switch back to TEXT EDITOR Mode.

 48

Source files are saved under file extensions .CUL and .CUB, as TWO FILES.
If you need to backup or move source files, you must save BOTH of these
files.

see .CUL files. (.CUB files are not
folder). When you open .CUL file,

ile.

When opening a file, you will only
displayed, but they are in the same
CUBLOC STUDIO automatically opens CUB f

The source code can only be saved on the PC. Source code downloaded to
the CUSB can not be recovered.

When you press the RUN button (or
CTRL-R), Save-> Compile->
Download-> Execute are
automatically processed.
LADDER and BASIC both are
compiled with one RUN button. If
error is found during compilation,
the screen will move to where the
error occurs.

IMPORTANT
CUBLOC module supports “Code-
protection.” By encrypting
download data, others can not
simply read part of the chip’s
memory to access the source
code.

 49

Creating BASIC

You can create BASIC code as shown below. CublocStudio Text Editor is
similar to most text editors and supports Coloring of certain commands.

Short-Cut Explanation
CTRL-Z UNDO
CTRL-O OPEN
CTRL-S SAVE

CTRL-C COPY
CTRL-X CUT
CTRL-V PASTE
CTRL-F FIND
CTRL-HOME Go to the very beginning
CTRL-END Go to the very end
CTRL-Y REDO

 50

Debugging

As you can see in the above example, DEBUG command can be used to
debug your BASIC program while it’s running. Be aware that you are not
allowed to use both Debugging and LADDER Monitoring at the same time.
You must remove Debug commands or comment them out with an
apostrophe to use LADDER Monitoring. Another option is to use the
command “Set Debug Off,” which will turn OFF the DEBUG feature.

 51 51

Menus

File Menu

Menu Explanation
New Create new file.
Open Open file.
Ladder Import Import Ladder Logic part of a CUSB program.
Save Save current file.
Save As Save current file under different name.
Save Object Save current program as an object file. Use this to protect

your source code. Object file is strictly binary format file so
others cannot reverse engineer it. You can use “Download
from Object File” to download your object file to CUSB.
Create object files for internet-downloading with MaxPORT,
CuMAX or CuMAX Server.

Print Ladder Print Ladder Logic Section only.
Print Basic Print Basic Section only.
Print Setup Setup Printer for printing Ladder Logic Section.
Download from
Object file

Download an Object file to the CUSB.

Basic Section Switch to Basic Section for editing. (Or press F1).
Ladder Section Switch to Ladder Logic Section for editing. (Or press F2).
Last 4 Files Edited View last 4 files edited.
Exit Exit CUBLOC Studio

 52

Run Menu

Menu Explanation
Run Compile Basic and Ladder, download to CUSB if there

are no errors, and restart the program automatically.
To disable automatic restar
>Studio Option to change.

t, please go to Setup-

Reset Reset CUSB.
Ladder Monitor on Start Ladder Monitoring
BASIC Debug Terminal Open BASIC Debug Terminal Window.

This window opens automatically when there’s a
DEBUG command in the source code.

Clear CUBLOC’s Flash
Memory

Clear CUSB’s Flash Memory.

View Register Usage (After Compiling) View Register usage of Ladder Logic.

Setup Menu

Menu Explanation
PLC Setup Wizard Automatic BASIC source code generation for Ladder Logic
PC Interface Setup or.

Select COM1 through COM4.
Setup the RS232 COM PORT for Download/Monit

Editor Environment
Setup

Setup Editor Environment options for BASIC text editor.

Studio Options CUBLOC Studio Options.
Firmware Download Download Firmware to CUBLOC CORE. Please use this to

download firmware to CUBLOC CORE manually.

 53

 54

MEMO

 55

Chapter 5
Ladder Logic

WARNNING
If you do not use SET LADDER ON command, Ladder Logic will not be
executed.

LADDER Basics

The following is an example of one switch and a lamp.

If you take out the power, the following results:

If you express the above circuit diagram as Ladder Logic, the following
results:

P0 P9

As you can see, LADDER is simply an easy way to express circuit diagrams.
A switch is comparable to the P0 port and P9 is comparable to the LAMP.

There are many ways to connect other devices such as timers, counters,
and etc… The following is an OR and AND connection in Ladder Logic:

P0

P3

P2 P9

 56

In this circuit diagram, P0 and P2 and connected in logical combination of
AND. P0 and P3 are ORed. (Which mean either P0 or P3 has to be on) If
you express the above circuit diagram in Ladder Logic, it will be as follows:

In CUBLOC STUDIO, the right side is not shown. In the Ladder Logic of
CUBLOC, P0, P1, P2 are called “Registers”.

 57

Creating LADDER

The below screen shows you how Ladder Logic is created in CUBLOC
STUDIO.

The red box shown above is the cursor for Ladder Logic. You may use the
keyboard up, down, left, and right keys or the mouse to control the red box.
After moving to the desired position, you can use keys F3~F12 to put the
desired symbol. You can also enter text for those required symbols.

 58

1. Press F3 to make a contact.

2. Type “START” and press ENTER.

3. Press F5 couple times and you will see that it creates a line.

4. Press F7 and type RELAY.

5. Go to the next rung (line) and press END.

Please press the ENTER key at the end of entering TEXT. At the very end
of the Ladder Logic, you must put an END command.

 59

Editing LADDER Text

Editing Text
To edit an existing TEXT, please place the cursor in the desired location and
press ENTER. Now you can edit the TEXT freely as you like.

Erasing a Cell

Enter SPACE key.

Erasing a Rung (one line)

A rung is a row in Ladder. You can press CTRL-D to erase a rung. This
actually moves the rung to a buffer

 60

Rung Recovery
To recover an erased rung, press CTRL-U.

Cell Insert and Delete

If you press DEL button from current position, the cell is erased and items
on the right are pulled one cell to the left.

If you press INS button from the current position, a blank cell is inserted
and items on the right are moved one cell right.

Rung Copy
When same style of rung is needed, you can press CTRL-A and it will copy
the above rung except text will not be copied.

 61

Comments
You can enter comments by adding an apostrophe (‘).

ou can use a semi-colon (;) to display to the next line.

For example:
“This is Sample Program ; Date 24-Sep-2007 Comfile Technology”

Y

 62

LADDER BLOCK COPY and PASTE

You can make a selection of a block to copy and paste to different parts of
the LADDER.

Use the mouse to click and drag to select the desired copy area. Press
CTRL-C to copy and CTRL-V to paste. Similar to text editing, you can press
CTRL-X to cut and paste also.

*Please be aware that in LADDER editing, UNDO is not supported.

 63

Monitoring

CUBLOC STUDIO supports real-time monitoring of Ladder Logic.

Clic k He re

Status of contacts that are ON will be displayed GREEN. Timer and
counter values will be displayed as decimal values. You can control the
monitoring speed by going to Setup Menu-> Studio option->
Monitoring speed. When the monitoring speed is too fast, it can affect
CUBLOC’s communications as monitoring takes up resources. We
recommend value of 5 for the monitoring speed.

*Please make sure to stop monitoring before editing or downloading.

 64

Time Chart Monitoring

Clic k Here

With Time Chart Monitoring, you will be able to see Ladder Logic contacts as
a time chart. The minimum width of the time chart is 40ms. You can use
the Zoom control function to measure the width of each pulse after stopping.
Up to 8 Registers can be monitored at one time.

Start / Stop
Device Select Com Port Select

Sampling Time

Zoom control

Relay select

Use/ Unuse

Time interval display

Cursor Move
control icon

X position

To use the Time Chart Monitor, you must set Debug off in Basic. To do this,
simple add “Set Debug Off” command at the very beginning of your code.

Set Debug Off

While using Time Chart Monitor, Ladder Monitoring may not be used either.

 65

WATCH POINT

When you want to watch the status of Registers and timers outside the
current Ladder Monitoring screen, you can use Watch Point feature.

You can use two apostrophes (‘’) to add a WATCH POINT. For example,
you want to see P0 right next to some other Register that is on exact
opposite side of the screen.

Examples:
‘’P0 ‘’P1 ‘’D0

* Please be aware that it’s two APOSTROPHES(‘’), not a QUOTATION
MARK(“).

'

' '

"

" "

SHIFT +

 66

Options Window

LADDER size adjust

Auto run when download

LADDER background color

LADDER monitorring speed setting

LADDER line space adjust

If you select to use “Auto Run when download”, the program will
automatically reset itself after downloading. This can become a problem for
machines that are sensitive to resets. By turning this option OFF, you will
be able to control when the program is resetted after downloading.

In the help menu, you will find Upgrade information, and the current version
of CUBLOC Studio.

 67

PLC Setup Wizard

To use Ladder Logic in CUBLOC, you must create the most basic BASIC
code. Although very simple, this can be hard for first-timers. You can use
the PLC Setup Wizard and setup the I/Os you will be using and create the
BASIC source automatically.

PLC SETUP WIZARD

As you can see in above screen, Device name, I/O status, alias, and other
features can be set simply by clicking.

You can set aliases for Registers, set Modbus to be ON, and set the baud
rate for the Modbus.
You can always review the current BASIC code generated in real-time by
pressing [Output BASIC code review] tab.

 68

For using A/D, PWM, or COUNT, you can simply read from the D Registers
for the results. For ADC0, the AD value is stored in D(10). The user can
simply read from Register D10 to find the value of AD0.

For PWM3, the user can simply write to Register D29 to output PWM.
For HIGH COUNT1, simply read Register D39. If the user wishes, he can
change the Register to store or write values by changing the BASIC code.
Please press [Replace Basic Code] when you are done to product the final
BASIC code. Please be aware that older code will be deleted at this point.

You can also save the setup to a file by clicking on [SAVE AS..]. Click on
[LOAD…] to bring back saved setup values.

 69

Usage of Ladder Register

With this feature, the user can see alias of all Registers. By using this
feature, the user will be able to save a great deal of time while debugging
and developing the final product. Please go to Run->View Register
Usage to open this window.

 70

 71

Register Expression

CB220, CB280 Registers
The following is a chart that shows CB220, CB280 Registers.

Register Name Range Units Feature
Input/Output Register
P

P0~P127 1 bit Interface w/
External devices

Internal Registers M M0~M511 1 bit Internal Registers
Special Register F F0~F127 1 bit System Status
Timer T T0~T99 16 bit (1 Word) For Timers
Counter C C0~C49 16 bit (1Word) For Counters
Step Enable S S0~S15 256 steps

(1 Byte)
For Step Enabling

Data Memory D D0~99 16bit (1 Word) Store Data

P, M, and F Registers are in bit units whereas T, C, and D are in word units.
To access P, M, and F Registers in word units, you can use WP, WM, or WF.

Register
Name

Range Units Feature

WP WP0~7 16 bit (1 Word) Register P Word Access
WM WM0~WM31 16 bit (1 Word) Register M Word Access
WF WF0~WF7 16 bit (1 Word) Register F Word Access

WP0 contains P0 through P15. P0 is located in the LSB of WP0 and P15 is
located in the MSB of the WP0. These Registers are very useful to use with
commands like WMOV.

CB290 Registers
The following is a chart that shows CB290 Registers. CB290 has more M, C,
T, and D Registers than CB220 and CB280.

Register Name Range Units Feature
Input/Output
Register P

P0~P127 1 bit Interface w/ External
devices

Internal Registers
M

M0~M1023 1 bit Internal Registers

Special Register F F0~F127 1 bit System Status
Timer T T0~T255 16 bit (1 Word) For Timers
Counter C C0~C255 16 bit (1 Word) For Counters
Step Enable S S0~S15 256 steps(1

Byte)
For Step Enabling

Data Memory D D0~511 16 bit (1 Word) Store Data

P, M, and F Registers are in bit units whereas T, C, and D are in word units.
To access P, M, and F Registers in word units, you can use WP, WM, or WF.

Register
Name

Range Units Feature

WP WP0~7 16 bit (1 Word) Register P Word Access
WM WM0~WM63 16 bit (1 Word) Register M Word

Access
WF WF0~WF7 16 bit (1 Word) Register F Word Access

WP0 contains P0 through P15. P0 is located in the LSB of WP0 and P15 is
located in the MSB of the WP0. These Registers are very useful to use with
commands like WMOV.

P0WP0

WP1

WP2

WP3

P15

P31 P16

P32

P48

P47

P63

 72

Ladder symbols

Contact A, Contact B

Contact A is “Normally Open” and closes when a signal is received. On the
other hand, Contact B is “Normally Closed” and opens when a signal is
received.

(A) Normal Open (B) Normal Close

Input, Output Register Symbol

Input/Output Registers are the most basic symbols among the Registers in
Ladder Logic.

Contact A

Contact B Output Relay

Function Registers

Function Registers include timers, counters, and other math operation
Registers.

Function Relay

 73

Internal Register

Internal Register (M) only operates within the program. Unless connected
to an actual external port, it is only used internally. You may use M
Register as input or output symbol.

P Registers that are not used as I/O ports

CUBLOC supports P Registers from P0 to P127. P Register is directly
connected to I/O ports 1 to 1. But most models of CUBLOC have less than
128 I/O ports. In this case, you may use the unused portion of P Registers
like M Registers.

 74

Using I/Os

CUBLOC I/O ports can be used by both BASIC and LADDER. Without
defined settings, all I/O ports are controlled in BASIC. To control I/O ports
in LADDER, you must use the “Usepin” command and set the I/O ports to
be used in LADDER.

USEPIN 0,IN
USEPIN 1,OUT

The above code sets P0 as input and P1 as output for use in LADDER.

The inner processes require that USEPIN will be re-flashed in LADDER. Re-
flashing means that the Ladder will read I/O status beforehand and store
the status in P Registers. After scanning, LADDER will re-write the status of
I/O ports into P Registers.

INPUT REFLASH

LADDER SCAN

OUTPUT REFLASH

In BASIC, IN and OUT commands can be used to control I/O ports. This
method directly accesses the I/O ports, whether it is read or writes. In
order to avoid collision among the two, the I/Os used in BASIC and LADDER
should be specified.

One a port is declared with USEPIN command, it can only be used in
LADDER and cannot be accessed in BASIC.

USEPIN 0,IN, START

USEPIN 1,OUT, RELAY

You can also add an alias such as START or RELAY as shown above for easy
reading of the Ladder Logic.

 75

Use of Aliases

When creating Ladder Logic using “Register numbers” such as P0, P1, and
M0, the user can use alias to help simplify their programs.

In order to use alias, you need to declare them in BASIC. You can simply
use ALIAS command to use ALIAS for Registers you desire to use.

ALIAS M0 = MAINMOTOR
ALIAS M2 = STATUS1
ALIAS M4 = MOTORSTOP

You have an option of either using USEPIN or ALIAS command to use
aliases in LADDER.

 76

 77

Beginning of LADDER

CUBLOC executes BASIC first. You can set LADDER to start by using the
command “SET LADDER ON”. When this command is executed, LADDER is
executed consistently within the specified scan time of 10 milliseconds.

If you do not use SET LADDER ON command, Ladder Logic will not be
executed.

SET LADDER ON

Declare devices to use

You must declare the device to be used so the compiler knows. The
following are examples of how to use the CONST DEVICE command.

CONST DEVICE = CB220 ‘ Use CB220.

or
CONST DEVICE = CB280 ‘ Use CB280.

This command must be placed at the very start of the program.

 78

To Use Ladder Only,
without BASIC

You must at least do a device declaration, port declaration, and turn on the
LADDER for BASIC even if you are going to only use Ladder.

The following is an example of such minimal BASIC code:

Const Device = CB280 'Device Declaration

Usepin 0,In,START 'Port Declaration
Usepin 1,In,RESETKEY
Usepin 2,In,BKEY
Usepin 3,Out,MOTOR

Alias M0=RELAYSTATE 'Aliases
Alias M1=MAINSTATE

Set Ladder On 'Start Ladder

Do
Loop 'BASIC program will run in infinite loop/

Enable Turbo Scan Time Mode

In order to use both BASIC and LADDER, a scan time of 10ms is supported
for LADDER. If you would like to enable Turbo Scan Time Mode when not
using BASIC, you can follow the example below.

LADDERSCAN command can be used inside a DO…LOOP to enable Turbo
Scan Time Mode.
Depending on the size of the Ladder program, this scan time MAY change.
For small programs less than 50 rungs, a scan time of 500us to 1ms are
possible.

Const Device = CB280 'Device Declaration
Usepin 0,In,START 'Port Declaration
Usepin 1,In,RESETKEY
Usepin 2,In,BKEY
Usepin 3,Out,MOTOR
Alias M0=RELAYSTATE 'Aliases
Alias M1=MAINSTATE
Do
 LadderScan
Loop

F16 is a special Register for checking the current scan time. You can
connect it to an I/O port as shown below and check it with an oscilloscope.

Below is an example of a conditional case where Turbo Scan Time is used.
Only when Register M0 is ON, will the Turbo Scan Time be enabled.
.

 Do
 Set Ladder On ’10 ms Scan when M0 is OFF
 Do While _M(0) = 1
 LadderScan ‘Only Execute when M is ON
 Loop
 Loop

 79

Things to Remember in LADDER

Input symbol must be placed at the very left side of the Ladder Logic.

* Output symbol must be placed at the very right side of the Ladder Logic.

 80

Identical outputs must not collide.

You may not use more than one vertical line as shown below.

More than 1 division will give compile error

 81

Ladder Logic moves from top to bottom.

Function Register can not be on the left side of the Ladder Logic.

When a Ladder Logic becomes complex, simply divide them so you can see
and understand them better as shown below.

 82

ladder instructions

Ladder low level instructions

Command Symbol Explanation
LOAD

Contact A (Normally Open)

LOADN

Contact B (Normally Closed)

OUT

Output

NOT

NOT (Inverse the result)

STEPSET

Step Controller Output (Step Set)

STEPOUT

Step Controller Output (Step Out)

MCS

Master Control Start

MCSCLR

Master Control Stop

DIFU

Set ON for 1 scan time when HIGH signal
received

DIFD

Set ON for 1 scan time when LOW signal
received

SETOUT

Maintain output to ON

RSTOUT

Maintain output to OFF

END

End of Ladder Logic

GOTO

Jump to specified label

LABEL

Label Declaration

CALLS

Call Subroutine

SBRT

Declare subroutine

RET

End Subroutine

 83

 84

High level instructions

Command Parameter Explanation
Data Transfer Commands
WMOV s,d Word Data Move
DWMOV s,d Double Word Data Move
WXCHG s,d Word Data Exchange
DWXCHG s,d Double Word Data Exchange
FMOV s,d,n Data fill command
GMOV s,d,n Group move command
Increment/Decrement Commands
WINC d Increment 1 to the Word
DWINC d Increment 1 to the Double Word
WDEC d Decrement 1 to the Word
DWDEC d Decrement 1 to the Double Word
Math Commands
WADD s1,s2,d Word Add
DWADD s1,s2,d Double Word Add
WSUB s1,s2,d Word Subtract
DWSUB s1,s2,d Double Word Subtract
WMUL s1,s2,d Word Multiplication
DWMUL s1,s2,d Double Word Multiplication
WDIV s1,s2,d Word Division
DWDIV s1,s2,d Double Word Division
Logical Operation Commands
WAND s1,s2,d Word AND
DWAND s1,s2,d Double Word AND
WOR s1,s2,d Word OR
DWOR s1,s2,d Double Word OR
WXOR s1,s2,d Word XOR
DWXOR s1,s2,d Double Word XOR
Bit Shift Commands
WROL d Word 1 bit Shift Left
DWROL d Double Word 1bit Shift Left
WROR d Word 1 bit Shift Right
DWROR d Double Word 1 bit Shift Right

LOAD,LOADN,OUT

LOAD is for Normally Open Contacts and LOADN is for Normally Closed
Contacts.

LOAD

LOADN

OUT

Registers that
can be used

P M F S C T D Constants

LOAD
LOADN

O O O O O O

OUT O O

P0

P2

P1

P3

 85

NOT, AND,OR

NOT Symbol

AND

OR

NOT symbol inverses the results. If P0 is ON then P5 will be OFF.

AND is when two Registers are horizontally placed next to each other. Both
Registers P0 and P1 must be True(ON) in order for P5 to be True (ON).

For OR operation, two Registers are vertically placed next to each other.
When either P0 or P1 is ON, P5 will be ON.

The following is an example of BLOCK AND and BLOCK OR.

BLOCK AND

BLOCK OR

 86

SETOUT, RSTOUT

SETOUT will turn ON P5 when P0 turns ON and will keep P5 ON even if P0
turns off.
On the other hand, RSTOUT will output OFF when P1 is ON and will keep P5
off even when P1 turns OFF.

Registers that
can be used

P M F S C T D Constant
s

SETOUT O O O
RSTOUT O O O

P0

P1

P5

 87

DIFU, DIFD

This command DIFU turns ON the output 1 scan time when input goes from
OFF to ON.
Conversely, DIFD turns OFF the output 1 scan time when input goes from
ON to OFF.

DIFU

DIFD

P0

P1

P5

P6

1 SCAN

1 SCAN

 88

MCS, MCSCLR

The command MCS and MCSCLR allow for the Ladder Logic between MCS X
and MCSCLR X to be executed when turned ON. If MCS is OFF, the Ladder
Logic in between MCS X and MCSCLR X will not be executed.

By using this command, the user is able to control a whole block of Ladder
Logic.

MCS # (0~7)

In the above example, when M0 turns ON, Ladder Logic between MCS 0 and
MCSCLR are executed normally. If M0 is OFF, P5 and P6 will turn OFF.

MCS number can be used from 0 to 7. MCS number should be used from 0
increasingly to 1, 2, 3, etc… MCS 1 must exist inside MCS 0 and MCS 2
must exist inside MCS 0. Likewise up to 7 MCS blocks can be used. When
MCS 0 is OFF, all MCS inside MCS 0 will turn OFF.

When MCS turns OFF, all outputs within that MCS block will turn OFF, Timer
will be resetted, Counter will be stopped.

Command When MCS is ON When MCS is OFF
OUT Normal Operation OFF
SETOUT Normal Operation Maintain status after MCS turned OFF
RSTOUT Normal Operation Maintain status after MCS turned OFF
Timer Normal Operation Reset to default value
Counter Normal Operation Maintain status after MCS turned OFF
Other
Commands

Normal Operation Stop Operation

 89

The following screenshot shows MCS used within another MCS.

*You may simply re use MCS 0 if no additional MCS needs to reside within
MCS.

 90

Step Control
S Register are used for step control. The following is the correct format for
step control.

S7:126

Relay (0~15)

Step # (0~255)

In Step Control, there’s “normal step” and “reverse step”. For normal step,
we can simply use the STEPSET command.

STEPSET

This command STEPSET will turn ON the current step if the previous step
was ON. Since it operates in one step at a time, we call it STEPSET. For
example, in the above ladder diagram, when P1 turns ON, S0:2 is turned
ON if S0:1 is turned ON. S0:1 is turned OFF. When P2 turns ON, S0:0 is
turned ON and other steps are turned off. S0:0, or step 0 is used for reset.
Otherwise STEPSET will move in order.

P0

P1

P2

S0:0

S0:1

S0:2

 91

STEPOUT

This command STEPOUT will only 1 step to be enabled at all times. The
last step to be turned ON will be the step to be enabled at any given
moment.

When P1 turns ON, S0:2 turn ON. When P0 turns on S0:1 turns ON. A
step will be kept on until another step is turned ON.

P0

P1

P2

S0:0

S0:1

S0:2

 92

TON, TAON
When input turns ON, timer value is decremented and output turns on when
timer is done. There are two kinds of timers, one that works in 0.01
second units and another that works in .1 second units.

Type of Timer Time units Maximum Time
TON 0.01 sec 655.35 sec
TAON 0.1 sec 6553.5 sec

There are 2 parameters with commands TON, TAON. For the first
parameter, you can choose between T0 to T99 and for the second
parameter, you may use a number or a data memory such as D0.

Usable
Registers

P M F S C T D Constants

TON, TAON O O O O

In the above LADDER diagram, when START turns ON, T0 Timer will start
from zero to 100. When 100 is reached, T0 will turn on. Here, 100 is
equal to 1 second for TON and 10 seconds for TAON.

START

T0

1sec

When START turns OFF, the timer is reset to original set value of 100 and
T0 turn off too. TON, TAON commands will reset its timer values upon
powering OFF. To use the features of battery backup, you can use KTON,
KTAON which will maintain its values when powered OFF. Below is an
example of how to reset TAON.

 93

TOFF, TAOFF

When input turns ON, output turns ON immediately. When the input turns
OFF, the output is kept ON until set amount of time. Like TON and TAON,
there are 2 commands for two different time units.

Type of Timer Time units Maximum Time
TOFF 0.01 sec 655.35 sec
TAOFF 0.1 sec 6553.5 sec

There are 2 parameters with commands TOFF , TAOFF For the first
parameter, you can choose between T0 to T99 and for the second
parameter, you may use a number or a data memory such as D0.

Usable
Registers

P M F S C T D Constants

TOFF, TAOFF O O O O

In the above LADDER diagram, when START turns ON, T0 Timer will
immediately turn ON. After START turns OFF, timer will start decreasing
from 100 to 0. When 0 is reached, T0 will turn OFF.
Here, 100 is equal to 1 second for TON and 10 seconds for TAOFF.

START

T0

1sec

 94

CTU

This command is an UP Counter. When input is received the counter is
incremented one. When the counter counts to a specified value, the set
Register will turn ON at that point. There is a Reset input so the counter
can be reset as needed.

PULSE

RESET

C0

100 pulse

CTD

This command is a DOWN Counter. When input is received the counter is
decremented one. When the counter reaches 0, the set Register will turn
ON at that point. There is a Reset input so the counter can be reset as
needed.

PULSE

RESET

C1

100 pulse

 95

UP/DOWN COUNTER

Below is a simple way of how UP Counter can be used to make a UP/DOWN
Counter.

P0 is for counting UP, P2 is for counting DOWN, and P1 is for resetting the
COUNTER. When Counter reaches 100, C0 turns ON.

P0

P2

P1

C0
COUNT

C0

 96

KCTU

This command is exactly same as CTU command except, this command will
be able to remember counter value when module is powered off. The
module used for this command MUST support battery backup(CB290). In
comparison, CTU command will lose its count value when the module is
powered off.

P0

P1

C0

100 pulse

Power off & on
Use RESET to set the
counter to 0 at the
beginning

When using this command for the very first time, please use the RESET
signal to reset the counter value. Otherwise counter will start at the last
value it was set. (random if not set before)

KCTD
This command is exactly same as CTD command except, this command will
be able to remember counter value when module is powered off. The
module used for this command MUST support battery backup(CB290). In
comparison, CTD command will lose its count value when the module is
powered off.

KCTU, KCTD must be used with modules that support “Battery-Backup”
such as the CB290.

 97

Comparison Logic

Compare 2 Words(16 bit) or 2 Double Words(32 bit) values and turn on
Output when the conditions are satisfied.

Comparison
Command

Data Types Explanation

=, s1, s2 Word(16 bit) When s1 and s2 are same Output turns ON.
<>, s1, s2 Word(16 bit) When s1 and s2 are different, Output turns

ON.
>, s1, s2 Word(16 bit) When s1 > s2, Output turns ON.
<, s1, s2 Word(16 bit) When s1 < s2, Output turns ON.
>=, s1, s2 Word(16 bit) When s1 >= s2, Output turns ON.
<=, s1, s2 Word(16 bit) When s1 <= s2, Output turns ON.
D=, s1, s2 DWord(32 bit) When s1 and s2 are same Output turns ON.
D<>, s1, s2 DWord(32 bit) When s1 and s2 are different, Output turns

ON.
D>, s1, s2 DWord(32 bit) When s1 > s2, Output turns ON.
D<, s1, s2 DWord(32 bit) When s1 < s2, Output turns ON.
D>=, s1, s2 DWord(32 bit) When s1 >= s2, Output turns ON.
D<=, s1, s2 DWord(32 bit) When s1 <= s2, Output turns ON.

You can mix different comparisons as shown below:

When either D0=T1 or D1<100 and if C0>=99, M0 will turn ON. In other
words, either D0 has to equal to value of T1 or D1 has to be less than 100
while C0 must be larger or equal to 99.

 98

How to store
Words and Double Words

Byte is 8 bits, Word is 16 bits, and Double Word is 32 bits.

1 BYTE

1 WORD

DOUBLE WORD

There are 2 ways to store Word of Double Word size of data. A Word or
Double Word can be stored starting from the LOW BYTE or from the HIGH
BYTE. In CUBLOC, it is stored from the LOW BYTE or LSB(Least Significant
Byte).

As you can see below, 1234H is
stored in Memory Address 0 and
12345678H is stored in Memory
Address 5. In every Memory
Address, 1 byte of data is stored.

0
1
2
3
4
5
6
7
8
9

78
56
34
12

34
12

The Registers C, T, D are in units of Words. To store a Double Word data,
2 Word spaces will be required, meaning two Register spaces. Below is an
example of store a Double Word data, 12345678H. D1 gets 1234H and D0
gets 5678H.

D0
D1
D2
D3
D4

5678
1234

 99

 100

Binary, Decimal, Hexadecimal

To program well, we need to know binary decimal, and hexadecimal
numbers. The following chart shows the relationships between these three
types of number representation.

Decimal Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

In CUBLOC’s Ladder Logic, we express binary and hexadecimal numbers in
the following manner:

Binary: 00101010B
Hexadecimal: 0ABCDH

We put a B at the end of the binary number and an H for hexadecimal
numbers. To clearly identify that ABCD is a number, we can put a 0 in
front of the hexadecimal number.
 (E.g. : 0ABH, 0A1H, 0BCDH)

*In BASIC, it is slightly different from LADDER in the way you express
binary and hexadecimal numbers. We use &B100010 or &HAB to express
those type of numbers.

WMOV, DWMOV
WMOV s, d
DWMOV s, d

The command WMOV moves 16 bit data from s to d. DWMOV can be used
for 32 bit data.

Usable Register P M F S C T D Constants
s (Source) O O O O
d (Destination) O O O

When input START turns ON, D0 will get 100. When IN0 turns ON, D2 will
get 1234H.

D0 100
D1
D2 1234H
D3 0
D4

 101

WXCHG, DWXCHG
WXCHG s, d
DWXCHG s, d

The command WXCHG exchanges data between s and d. WXCHG is for
exchanging 1 Word and DWXCHG is for exchanging Double Word.

Usable
Registers

P M F S C T D Constants

s O O O
d O O O

When START turns ON, D0 gets 100 and D1 gets 123. When IN0 turns ON,
D0 and D1 exchange their data. The result is as shown below:

D0 123
D1 100
D2
D3
D4

 102

FMOV
FMOV s, d, n

Store value in s to d and n number of times after that to additional locations.
This command is usually used for initializing or clearing memory.

Usable
Registers

P M F S C T D Constants

s O O O
d O O O
n O

Below is result of LADDER execution:

D0 100
D1 100
D2 100
D3 100
D4 100
D5 100

*Notice: Please Set n less than 255.

 103

GMOV
GMOV s, d, n

Store value starting at s to d by n memory locations. Please make sure not
to overlap memory locations as this could cause data collisions.

Usable
Registers

P M F S C T D Constants

s O O O
d O O O
n O

Below is result of LADDER execution:

D0 12
D1 34
D2 56
D3 78
D4 90
D5
D6
D7
D8
D9

D10 12
D11 34
D12 56
D13 78
D14 90
D15
D16

*Notice: Please Set n less than 255.

 104

WINC, DWINC, WDEC, DWDEC
WINC d
DWINC d
WDEC d
DWDEC d

WINC increments Word value in d by one.
DWINC increments Double Word value in d by one.
WDEC decrements Word value in d by one.
DWDEC decrements Double Word value in d by one.

Usable
Registers

P M F S C T D Constants

d O O O

Below is result of LADDER execution:

D0 99
D1
D2
D3

 105

WADD, DWADD
WADD s1, s2, d
DWADD s1, s2, d

Add s1 and s2 and store result in d.
WADD is for Word values and DWADD is for Double Word Values.

Usable
Registers

P M F S C T D Constants

s1 O O O O
s2 O O O O
d O O O

WSUB, DWSUB
WSUB s1, s2, d
DWSUB s1, s2, d

Subtract s2 from s1 and store result in d.
WSUB is for Word values and DWSUB is for Double Word Values.

Usable
Registers

P M F S C T D Constants

s1 O O O O
s2 O O O O
d O O O

D1 gets 95 in the above LADDER diagram.

 106

WMUL, DWMUL
WMUL s1, s2, d
DWMUL s1, s2, d

Multiply s1 and s2 and store result in d.
WMUL is for Word values and DWMUL is for Double Word Values.

Usable
Registers

P M F S C T D Constants

s1 O O O O
s2 O O O O
d O O O

The result of 1234H * 1234H is stored in D1 as a double word of 14B5A90H.

D0 1234H
D1 5A90H
D2 14BH

The result of 123456H * 1234H is stored as 4B60AD78H in D2

D0 3456H
D1 0012H
D2 0AD78H
D3 4B60H
D4 0
D5 0

 107

WDIV, DWDIV
WDIV s1, s2, d
DWDIV s1, s2, d

Divide s1 by s2 and store the result in d and leftover in d+1.
WDIV is for Word values and DWDIV is for Double Word Values.

Usable
Registers

P M F S C T D Constants

s1 O O O O
s2 O O O O
d O O O

D0 1234H
D1
D2 3
D3
D4 611H
D5 1

D0 5678H
D1 1234H
D2 7
D3 0
D4 0C335H
D5 299H
D6 5
D7 0

 108

WOR, DWOR
WOR s1, s2, d
DWOR s1, s2, d

Do Logical operation OR on s1 and S2 and store result in d.
WOR is for Word values and DWOR is for Double Word Values.

Usable
Registers

P M F S C T D Constants

s1 O O O O
s2 O O O O
d O O O

The result of above ladder diagram:

D0 1200H
D1 34H
D2 1234H

 109

WXOR, DWXOR
WXOR s1, s2, d
DWXOR s1, s2, d

Store result of s1 XOR s.
WXOR is for logical operation XOR in WORD units whereas DWXOR is for
DOUBLE WORD units.

Usable
Registers

P M F S C T D Constants

s1 O O O O
s2 O O O O
d O O O

The following is result of above LADDER:

D0 1234H
D1 0FFH
D2 12CBH

When you want to invert specific bits, you can use XOR logical operation.

 110

WAND, DWAND
WAND s1, s2, d
DWAND s1, s2, d

Store result of s1 AND s2. WAND is for logical operation AND in WORD
units whereas DWAND is for DOUBLE WORD units.

Registers that
may be used

P M F S C T D Constants

s1 O O O O
s2 O O O O
D O O O

The results of execution of LADDER above:

D0 1234H
D1 0FFH
D2 34H

You can use AND operation when you want to use specific bits only.

 111

WROL, DWROL
WROL d
DWROL d

Rotate the value on Register d 1 (double) word to the left. The value left
gets stored in the Carry flag. WROL moves one word whereas DWROL
moves double word.

Registers that
may be used

P M F S C T D Constants

d O O O

C d

If D0 has 8421H, the following results:

D0 0843H
D1

 112

WROR, DWROR
WROR d
DWROR d

Rotate the value on Register d 1 (double) word to the right. The value left
gets stored in the Carry flag. WROL moves one word whereas DWROL
moves double word.

Registers that
may be used

P M F S C T D Constants

d O O O

Cd

If D1 has 8421H, the following results:

D0
D1 0C210H

 113

GOTO, LABEL
GOTO label
LABEL label

The command GOTO will jump to the specified label. Label is for declaring
labels.

When START turns ON, the LADDER program will jump to label SK_1

In the below example LADDER diagram, when D0 equals C0, the program
will jump to SK_1.

 114

CALLS, SBRT, RET
CALLS label
SBRT label

CALLS will call a sub-routine.
SBRT is the starting point for a sub-routine.
RET is the ending point for a sub-routine.

End of Ladder

End of sub-routine

Start of sub-routine

RET must be used when

there are sub-routines

Main Program

Please be aware that when adding sub-routines to your program, you need
to add RET to the end of main program to differentiate from sub-routines.
END goes at the very end of main program and sub-routines in this case.

 115

INTON
INTON s,d

INTON is same as WMOV command except it can cause an interrupt in
BASIC part of CUBLOC.

Usually
Registers

P M F S C T D Constants

s (Source) O O O O
d (Destination) O O O

 116

 117

Special Registers
You can use special Registers to find out about the current status of
CUBLOC or use them for timing functions and applications.

Special Register Explanation

F0 Always OFF
F1 Always ON
F2 Turn on 1 SCAN time at POWER UP (Set Ladder On).
F3
F4
F5
F6
F7
F8 1 SCAN On every 10ms
F9 1 SCAN On every 100ms
F10
F11
F12
F13
F14
F15
F16 Repeat ON/OFF every 1 Scan time.
F17 Repeat ON/OFF every 2 Scan times.
F18 Repeat ON/OFF every 4 Scan times.
F19 Repeat ON/OFF every 8 Scan times.
F20 Repeat ON/OFF every 16 Scan times.
F21 Repeat ON/OFF every 32 Scan times.
F22 Repeat ON/OFF every 64 Scan times.
F23 Repeat ON/OFF every 128 Scan times.
F24 Repeat ON/OFF every 10ms
F25 Repeat ON/OFF every 20ms
F26 Repeat ON/OFF every 40ms
F27 Repeat ON/OFF every 80ms
F28 Repeat ON/OFF every 160ms
F29 Repeat ON/OFF every 320ms
F30 Repeat ON/OFF every 640ms
F31 Repeat ON/OFF every 1.28 seconds
F32 Repeat ON/OFF every 5.12 seconds
F33 Repeat ON/OFF every 10.24 seconds
F34 Repeat ON/OFF every 20.48 seconds
F35 Repeat ON/OFF every 40.96 seconds
F36 Repeat ON/OFF every 81.92 seconds
F37 Repeat ON/OFF every 163.84 seconds
F38 Repeat ON/OFF every 327.68 seconds
F39 Repeat ON/OFF every 655.36 seconds
F40 Call LADDERINT in BASIC
F41
F42

 118

* If you write 1 to F40, you can create a LADDERINT in BASIC. Please
refer to ON LADDERINT GOSUB command for details.

* F2 causes 1 Scan ON at the time of BASIC’s SET LADDER ON command.

*Blank special Registers are reserved. Please do not use them.

Chapter 6
CUBLOC

BASIC
Language

IMPORTANT
You must declare the device being used before using BASIC or LADDER.

CONST DEVICE = CB280 ‘ Use CB280 for CUSB Series

 119

 120

CUBLOC BASIC Features

Interface PC with RS232C Port
CUBLOC BASIC uses RS232 port to interface with the PC. You also have
option of using it to connect to XPORT and use monitoring/downloading via
the internet.

CUBLOC BASIC supports functions and sub
routines.
Like C language, the user is able to create sub-routines and functions to
lessen the complexities of their programs. By being able to use sub-
routines and functions, it is now possible to simple copy & paste for new
programs, instead of starting everything from scratch.

Function SUM(A As Integer, B As Integer) As Integer

 Dim RES As Integer

 RES = A + B

 SUM = RES

End Function

Calculations can be done within conditional
statements such as If, While, etc…

IF ((A + 1) = 100) THEN GOTO ABC

IF ((A + 1) = 100) AND (B / 100 = 20) OR C = 3 THEN GOTO ABC

Multi-dimension arrays are supported.
CUBLOC supports multi-dimension arrays including character arrays.
Maximum of 8-D arrays are supported and only 1 dimensional array is
allowed for character arrays.

DIM A(100,10,20) AS BYTE

 121

Hardware RS232 Communication are Supported
CUBLOC supports hardware RS232 communication, meaning it does not
conflict with real-time processing.

Conditional Statements are supported.
CUBLOC BASIC supports SELECT CASE and DO…LOOP conditional
statements.

A graphic LCD library is provided.
CUBLOC provides a complete graphic LCD library for GHLCD. Drawing
boxes, lines, circles, and graphic commands are easily implemented in few
lines of code.

Various Communication Protocols are supported.
CUNET : Display Peripherals such as LCD
RS232 : 2 channel
MODBUS : HMI and Touch screen Protocol
I2C : I2C commands supported (I2CREAD, I2CWRITE)
SPI : SPI commands supported (SHIFTIN, SHIFTOUT)
PAD: Keypad, touchpad supported.

Advanced Basic Language is Comparable to C
Language.
#include support
#define support
#if..#ifdef..#endif conditional compile support
Incr, Decr commands: same function as C’s + +, - -
Pointers allowed (PEEK, POKE, and MEMADR)
String Arrays (1-Dimension)

Simple BASIC program

Below is an example of simple BASIC program with Do…Loop statement.

Dim A As Byte
Do
 Byteout 0, A
 A=A+1
Loop

This program outputs to Port P0-P7 an increasing value of A. The next
program uses a function to accomplish the same task:

Dim A As Byte
Do
 Byteout 0, A
 A=ADD_VALUE(A)
Loop
End

Function ADD_VALUE(B As Byte) As Byte
 ADD_VALUE = B + 1
End Function

By separating A=A+1 to a function, the user will be able to separate one big
program into small chunks. As you can see here, the main program ends
when “END” comes and functions are added afterwards.

MAIN PROGRAM

SUB

SUB

Sub routineFUNCTION

 122

 123

Sub and Function

For sub-routines, you can either use Sub or Function. Sub does not return
any values whereas Function does return values.

Sub SubName (Param1 As DataType [,ParamX As DataType][,…])
 Statements
 [Exit sub] ‘ Exit during sub-routine
End Sub

Function FunctionName (Param1 As DataType [,…])[As ReturnDataType]
 Statements
 [Exit Function] ‘ Exit during sub-routine
End Function

To return values using Function, simply store the final value as the name of
the Function like shown here:

Function ADD_VALUE(B As Byte) As Byte
 ADD_VALUE = B + 1 ‘ Return B+1.
End Function

Global and Local Variables

When you declare variables inside a Sub or Function, it is considered to be a
“Local” variable. The Local Variables are created upon call of the Sub or
Function and removed at exit. This means that the Local Variables will use
the Data Memory and then free it for other resources. Local Variables may
only be referred to or used inside the Sub or Function.
On the other hand, Global variables may be used in all parts of your code.

Global Variable

Local Variable Local Variable

Sub Program A Sub Program B

Main Program

Dim A As Integer ‘ Declare A as Global Variable
LOOP1:
 A = A + 1
 Debug Dp(A),CR ‘ Display A on Debug screen
 DELAYTIME ‘ Call Sub DELAYTIME
 Goto LOOP1
 End ‘ End of Main Program

Sub DELAYTIME()
 Dim K As Integer ‘ Declare K as Local Variable
 For K=0 To 10
 Next
End Sub

In the program above, “A” is declared as Global Variable and “K” is declared
as Local Variable. A can be used anywhere in your code but K may only be
used inside the subroutine DELAYTIME().

Arrays may not be used for Local Variables. Arrays must be declared as
Global Variables.

 124

 125

Calling subroutines

Once the subroutine is created, you can use them like a regular command.
For Sub, you do not need parenthesis around the parameters. For multiple
parameters, use a comma to separate them.

The example shows how this is done:

DELAYTIME 100 ‘ Call subroutine
End

Sub DELAYTIME(DL As Integer)
 Dim K As Integer ‘ Declare K as Local Variable
 For K=0 To DL
 Next
End Sub

For Function, you need parenthesis around the parameters. Parenthesis is
required even when there is no parameters.

Dim K As Integer
K = SUMAB(100,200) ‘ Call subroutine and store return value

in K
Debug Dec K,cr
End

Function SUMAB(A AS INTEGER, B AS INTEGER) As Integer
 SUMAB = A + B
End Function

Subroutine Position

Subroutines must be created after the main program. To do this, simply
put “End” at the end of your main program like shown here:
(“End” is only required if you have subroutines)

Dim A As Integer
LOOP1:
 A = A + 1
 Debug DP(A),CR
 DELAYTIME
 Goto Loop1

 End ‘ End of main program

Sub DELAYTIME()
 Dim K As Integer
 For K=0 To 10
 Next
End Sub

Sub and Function subroutines come after the “End.” Gosub subroutines
must be within the main program like shown here:

 Dim A As Integer
 :
 :
 Gosub ABC
 :
ABC:
 :
 End

Sub DEF(B as Byte)
 :
 :
End Sub

Function GHI(C as Byte)
 :
 :
End Function

* End command is used to differentiate between BASIC main program and
the subroutines. END command used in Ladder Logic is to indicate the
end of Ladder Logic.

 126

 127

Subroutine Parameters and Return Values

Function may use any data type as parameters and return values.

Dim A(10) As Integer

Function ABC(A AS Single) as Single ‘ Return Single value
End Function

Function ABC(A AS String * 12) as String *12 ‘ Return String

value
End Function

Function ABC(A AS long) ‘ Long value as a parameter
End Function ‘ When return value is not declared, Long

 ‘ will be used as return value.

Exceptions includes using arrays as parameters.

Function ARRAYUSING(A(10) AS Integer) ‘ Arrays may not be used as
 ‘ parameters.
End Function

But you may use one element of an array as a parameter.

Dim b(10) as integer
K = ARRAYUSING(b(10)) ‘ Use 10th element of array b as a parameter.

Function ARRAYUSING(A AS Integer) as integer
End Function

All subroutines’ parameters are “Call by value,” meaning the values are only
used as reference. Even if the parameter value is changed within a
subroutine, it will not affect the actual variable used as a parameter like
shown here:

Dim A As Integer
Dim K As Integer
A = 100
K = ADDATEN(A)
Debug Dec? A, Dec? K,CR ‘ A is 100 and K is 110
End

Sub ADDATEN(V As Integer)
 V = V + 10 ‘ A does not change when V is changed.
 ADDATEN = V
End Sub

 128

In contrast, there is “Reference by Address,” in which the actual Data
Memory address is passed to the subroutine. CUBLOC only supports
“Call by Value.”

Too many characters in one line?
If you run out of room, you can use an underscore character (_) to go to
the next line like shown here:

ST = “COMFILE TECHNOLOGY”
ST = “COMFILE _
 TECHNOLOGY”

Comments
Use an apostrophe (‘) to add comments. Comments are discarded during
compile, meaning it will not take up extra Program Memory.

ADD_VALUE = B + 1 ‘ Add 1 to B.(Comment)

Nested subroutines
Nested subroutines are supported in CUBLOC.

A=FLOOR(SQR(F)) ‘ Do Floor() on SQR(F).

Colons
Colons may not be used to put append commands in CUBLOC BASIC.

A=1: B=1 : C=1 ‘ Incorrect.

A=1 ‘ Correct.
B=1
C=1

Variables
There are 5 types of variables in CUBLOC BASIC.

 BYTE 8 bit Positive Number, 0~255
 INTEGER 16 bit Positive Number, 0~65535
 LONG 32 bit Positive/Negative Number,

 (-2147483648 ~ +2147483647)
 SINGLE 32 bit Floating Point Number,

 (-3.402823E+38 ~ 3.402823E+38)
 STRING String, 0 TO 127 bytes

A Byte is an 8 bit positive number representing 0 to 255.
An Integer is a 16 bit positive number representing 0 to 65535.
A Long is a 32 bit positive or negative number representing
-2,147,483,648 to 2,147,483,647.
A Single is a 32 bit positive or negative floating point number representing
-3.402823x1038 to 3.402823 x 1038.

BYTE

WORD

LONG

*For storing negative numbers, please use LONG or SINGLE.
Use DIM command for declaring variables as shown below:

Dim A As Byte 'Declare A as BYTE.
Dim B As Integer, C As Byte 'Comma may NOT be used.
Dim ST1 As String * 12 'Set String size for String.
Dim ST2 As String 'Set as 64 bytes (default).
Dim AR(10) As Byte 'Declare as Byte Array.
Dim AK(10,20) As Integer 'Declare as 2D Array
Dim ST(10) As String*10 'Declare a String Array

VAR Command (Same function as DIM)
VAR can be used in place of DIM to declare variables. Below are examples
of how to use VAR:

A Var Byte ' Declare A as BYTE.
ST1 Var String * 12 ' Declare ST1 as String of 12 bytes.
AR Var Byte(10) ' Declare AR as Byte Array of 10.
AK Var Integer(10,20) ' Declare AK as 2-D Integer Array
ST Var String *12 (10) ' Declare String Array

 129

String

A String size can be set up to 127 bytes. When size is not set, default
value of 64 bytes will be used as the String size.

Dim ST As String * 14 ' For maximum usage of 14 bytes
Dim ST2 As String ' Set as 64 byte String variable

When setting a String as 14 bytes, another byte is allocated by the
processor to store NULL. When storing “COMFILE TECHNOLOGY” in a 14
byte String, the last 4 characters (bytes) will not be stored.

Dim ST As String * 14
ST = “COMFILE TECHNOLOGY” ‘ “LOGY” is not stored

COMFILE TECHNO LOGY

COMFILE TECHNOLOGY

do not fit here

In CUBLOC BASIC, (“) must be used for String. An apostrophe (‘) may not
be used.

ST = “COMFILE “ TECHNOLOGY” ‘ (“) can not be used inside the String.
ST = “COMFILE ‘ TECHNOLOGY” ‘ (‘) can not be used inside the String.
ST = “COMFILE , TECHNOLOGY” ‘ (,) can not be used inside the String.

You can use CHR(&H22) to express (“) and CHR(&H27) to express (‘) and
CHR(&H2C) to express (,).

Example for printing to LCD:

Print Chr(&H22),“COMFILE “ TECHNOLOGY”,Chr(&H22) ‘ (“)
Print Chr(&H27),“COMFILE “ TECHNOLOGY”,Chr(&H27) ‘ (‘) Apostrophe

 130

 131

To connect multiple Strings, you can use a comma as shown below:

Print “ABC”,”DEF”,”GHI” ‘ Same as PRINT “ABCDEFGHI”.

Use CR for Carriage Return (Next Line).

Print “California”,CR ‘ Print California and go to the next line.

Merge Multiple Strings

To merge multiple strings together, use & as shown below:

Dim a1 As String * 30
Dim a2 As String * 30
a1 = "Comfile "
a2 = "Technology "
a1 = a1 + a2 + ",Inc"
Debug a1,cr

The above program will show “Comfile Technology, Inc” on the debug
screen.

 132

How to Access Individual Characters within a
String

You can use strings like an array. Simply append “_A” after the name of
your string variable like shown here:

DIM ST1 AS STRING * 12 ‘ ST1_A Array is created at the same time.
ST1 = “123”
ST1_A(0) = ASC(“A”) ‘ Store A in the first character of ST1.

When you declare Dim St1 as String * 12, St1_A(12) is also declared
automatically by the RTOS. The string and the array use the same
memory space. Whether you use the string or the array, you are still
accessing same memory location.

The example below shows how to convert blank characters to z.

 Const Device = CB280
 Dim a as integer
 Dim st As String * 30
 st = "C O M F I L E "
 Print st,cr
 For a = 0 To 10
 If st_a(a) = Asc(" ") Then
 st_a(a) = Asc("z")
 End If
 Next
 Print st

With string arrays, you may not use this feature.

 Dim st(10) As String * 3

 133

About Variable Memory Space

In the case of CB220 and CB280, 2KB (2048 bytes) of data memory is
available. You may not use the whole data memory for variables. Part of
the data memory space is reserved for use by peripherals such as DISPLAY
and the RS232 buffers. The 80 bytes are used for DEBUG command.

Sub and Function routines and interrupt routines use up data memory space.
Of the available 2048 bytes, about 1800 bytes can be used for global
variables. The more Sub/Function routines you use, you will have less
memory available for variables and constants.

When the user uses buffers with command SET DISPLAY or OPENCOM, the
data memory will lose that much amount of memory space to use for
variables.

Initializing Memory

CUBLOC BASIC data memory is not cleared at POWER UP. The user must
initialize variables to zero or use RAMCLEAR command to clear the whole
memory.

Ramclear

The data memory will contain garbage values at POWER UP.

In the case of Battery-backed up modules, the variables will remember their
values after a Power-cycle (powering Off and On).

Arrays

CUBLOC BASIC supports up to 8 dimensional arrays, each dimension
allowed up to 65535 members.

DIM A(20) AS BYTE ‘ Declare A’s array size as 20
DIM B(200) AS INTEGER ‘ Declare Integer array
DIM C(200) AS LONG ‘ Declare Long array
DIM D(20,10) AS SINGLE ‘ 2-dimensional Single array
DIM ST1(10) AS STRING * 12 ‘ Declare String array

A(6)

A(3,6)

A(3,3,6)

CUBLOC supports multi-dimension arrays including character arrays. Up to
8-D arrays are supported. Please make note of how much memory is used
when using multi-dimensional arrays.

‘ 13 * 10 = 130 Bytes of Data Memory
DIM ST1(10) AS STRING * 12

 ‘ 4*10 * 20 = 800 Bytes of Data Memory
DIM D(20,10) AS SINGLE

 134

Bits and Bytes modifiers

A variable’s bits and bytes can individually be accessed by using the
commands shown below.

DIM A AS INTEGER
DIM B AS BYTE
A.LOWBYTE = &H12 ‘ Store &H12 at A’s lowest byte

Bit
LOWBIT Variable’s bit 0
BIT0~31 Variable’s bit 0 through 31

 A.BIT2 = 1 ‘Make bit 2 of A 1.

BIT
7

BIT
6

BIT
5

BIT
4

BIT
3

BIT
2

BIT
1

BIT
0

LOWBIT

BYTE

BIT
7

BIT
31

BIT
6

BIT
30

BIT
5

BIT
29

BIT
4

BIT
28

BIT
3

BIT
27

BIT
2

BIT
26

BIT
1

BIT
25

BIT
0

BIT
24

LOWBIT

LONG

Nibble
A Nibble is for 4 bits. By using Nibbles, the user has more flexibility to
manipulate the data.

LOWNIB Variable’s NIBBLE 0
NIB0~7 Variable’s NIBBLE 0~7

 A.NIB3 = 7 ‘ Store 7 in Nibble 3 of A

NIB0NIB1NIB6NIB7
LOWNIB

LONG

 135

Byte
To specify certain bytes of a variable, the below names can be used.
(A Byte is 8 bits)

LOWBYTE, BYTE0 BYTE 0 of Variable
BYTE1 BYTE 1 of Variable
BYTE2 BYTE 2 of Variable
BYTE3 BYTE 3 of Variable

A.BYTE1 = &HAB ‘Store &hab in byte 1 of A

BYTE3

LOWBYTE

BYTE2 BYTE1 BYTE0LONG

Word
To specify certain Word of a variable, the below names can be used:
(A Word is 16 bits)

LOWWORD, WORD0 Word 0 of variable
WORD1 Word 1 of variable

A.WORD1 = &HABCD ‘Store &habcd in word 1 of A

WORD1

LOWWORD

WORD0LONG

*Max’s Tips: Need to access 5 bits of a variable?
Try NewVariable = Variable and 0x1F.
This will mask the last 5 bits of the variable.

 136

 137

Constants
Constants can be used to declare a fixed value at the beginning of the
program. By doing this, readability and debuggability of the source code
will be easier.
The command CONST can be used to declare constants in CUBLOC.

CONST PI AS SINGLE = 3.14159
CONST WRTTIME AS BYTE = 10
CONST MSG1 AS STRING = “ACCESS PORT”

When the constant is not given a type, the compiler will find an appropriate
type for it as shown below:

CONST PI = 3.14159 ‘ Declare as SINGLE
CONST WRTTIME = 10 ‘ Declare as Byte
CONST MYROOM = 310 ‘ Declare as Integer since it’s over
255.
CONST MSG1 = “ACCESS PORT” ‘ Declare as String

CON (Another way of CONST)
The Command CON can be also used to declare constants in the following
way:

PI CON 3.14159 ‘ Declare as SINGLE.
WRTTIME CON 10 ‘ Declare as Byte
MYROOM CON 310 ‘ Declare as Integer
MSG1 CON “ACCESS PORT” ‘ Declare as String

 138

Constant Arrays...
By using constant arrays, the user is able to store a list of numbers before
the program begins. By using constant arrays, the program can be
simplified as shown below:

Const Byte DATA1 = (31, 25, 102, 34, 1, 0, 0, 0, 0, 0, 65, 64, 34)
I = 0
A = DATA1(I) ' Store 31 in A.
I = I + 1
A = DATA1(I) ' Store 25 in A.
Const Byte DATA1 = ("CUBLOC SYSTEMS")

String data can be store in Byte constant arrays. The ASCII code of the
character is returned.
If DATA1(0) is read, ASCII code of ‘C’ is returned. Likewise if DATA1(1) is
read, ASCII code of ‘U’ is returned.

Whole and floating point numbers can be used as shown next:

CONST INTEGER DATA1 = (6000, 3000, 65500, 0, 3200)
CONST LONG DATA2 = (12345678, 356789, 165500, 0, 0)
CONST SINGLE DATA3 = (3.14, 0.12345, 1.5443, 0.0, 32.0)

For multi-lines of constants, following ways can be used:
1)

CONST BYTE DATA1 = (31, 25, 102, 34, 1, 0, 0, 0, 0, 0, 65, 64, 34,
 12, 123, 94, 200, 0, 123, 44, 39, 120, 239,
 132, 13, 34, 20, 101, 123, 44, 39, 12, 39)

2)

CONST BYTE DATA2 = (31, 25, 102, 34, 1, 0, 65, 64, 34,_
 101, 123, 44, 39, 12, 39)

Strings can be used as shown next:

CONST STRING * 6 STRTBL = (“COMFILE”, “BASIC”, “ERROR”, “PICTURE”)

 139

Please set the size of the String to be greater than any of the members of
the constants.

Only 1 dimensional array is allowed for constants.

Comparison Array Constant Array
Storage Data Memory (SRAM) Program Memory (FLASH)
Stored Time During Program run During Download
Can be Changed Yes No
Purpose Changing Values Unchanging values
Power OFF Disappear Kept

 140

Operators
When using many logical operators, the below priority table is used to
determine which operator is operated on first.

Operator Explanation Type Priority
^ To the power of Math Highest
*,/,MOD Multiply, Divide, MOD Math
+,- Add, Subtract Math
<<, >> Left Shift, Right Shift Logic
<, >, <=, >= Less than,

Larger than,
Less or Equal to , Larger
or Equal to.

Compare

=, <> Same, Different Compare
AND, XOR, OR AND,XOR,OR Logic Lowest

Please refer to the above table for checking priority of operator used. In the
rows, the highest priority is calculated from the left to right.

You can use operators as conditions like below:

IF A+1 = 10 THEN GOTO ABC

Whole numbers and floating point numbers can be mixed. The final result
follows the type of variable it will be stored in.

DIM F1 AS SINGLE
DIM A AS LONG
F1 = 1.1234
A = F1 * 3.14 ‘ A gets 3 even though result is 3.525456.

Please make sure to include a period(.) when using floating point numbers.

F1 = 3.0/4.0 ‘ Write 3/4 as 3.0/4.0 for floating values
F1 = 200.0 + FLOOR(A) * 12.0 + SQR(B) ‘200 as 200.0, 12 as 12.0…

AND, XOR, OR is used for logical operations and as Bit operators.

IF A=1 AND B=1 THEN C=1 ‘ if A=1 and B=1 …(Logical Operation)
IF A=1 OR B=1 THEN C=1 ‘ if A=1 or B=1…(Logical Operation)

A = B AND &HF ‘Set the upper 4 bits to zero. (Bit Operation)
A = B XOR &HF ‘Invert the lower 4 bits. (Bit Operation)
A = B OR &HF ‘Set the lower 4 bits to 1. (Bit Operation).

Strings can be compared with the “=” sign. ASCII values are compared for
Strings.

DIM ST1 AS STRING * 12
DIM ST2 AS STRING * 12
ST1 = “COMFILE”
ST2 = “CUBLOC”
IF ST1=ST2 THEN ST2 = “OK” ‘ Check if ST1 is same as ST2.

Operators used in our BASIC language may slightly differ with actual Math
operators. Please refer to the below table:

Operator Math Basic Example
Add + + 3+4+5, 6+A

Subtract - - 10-3, 63-B
Multiply X * 2 * 4, A * 5
Division / 1234/3, 3843/A

To the power of 53 ^ 5^3, A^2
MOD Remainder of mod 102 mod 3

In CUBLOC BASIC, a slash (/) is used in place of division sign.
Please make sure to use parenthesis appropriately for correct calculations.

 141

Operator Priority

When multiple operators are used, the following operator priority is used:

1) Operator inside parenthesis
2) Negative Sign (–)
3) (^)
4) Multiplication, Division, Remainder (*, /, MOD)
5) Addition/Subtraction (+,-)
6) Left Shift, Right Shift (<<, >>)

 142

 143

Expressing Numbers in Bits

3 ways of bit representation of numbers are possible with CUBLOC. Binary
(2 bit), Decimal (10 bit), and Hexadecimal (16 bit) can be used.

Examples of how-to:

Binary : &B10001010, &B10101,
 0b1001001, 0b1100

Decimal : 10, 20, 32, 1234

Hexadecimal : &HA, &H1234, &HABCD
 0xABCD, 0x1234 Similar to C
 $1234, $ABCD Similar to Assembly Language

 144

The BASIC Preprocessor

The BASIC preprocessor is a macro processor that is used automatically by
the compiler to transform your program before compilation. It is called a
macro processor because it allows you to define macros, which are brief
abbreviations for longer constructs.

In CUBLOC BASIC, a Preprocessor similar to C language can be used.
Preprocessor directives like #include and #define can be used to include
files and process code before compiling.

#include “filename”
Include file in the source code. For files in the same directory as the source
file, you can do the following:

#INCLUDE “MYLIB.cub”

For files in other directories, you will need to include the full path name like
shown here:

#INCLUDE “c:\mysource\CUBLOC\lib\mylib.cub”

By using include files, you can store all of your sub-routines in a separate
file.
Please make sure to use pre-processor directive #include at the very end of
your program. (After “End” for subroutines)

#define name constants
By using #define, you can define constants before compiling.

#define motorport 4

low motorport

For the example above, motorport will be compiled as 4. You can also just
use CONST for such examples like this:

CONST motorport = 4

low motorport

The following example uses #define for replacing a line of command:

 145

#define FLAGREG1 2

#define f_led FLAGREG1.BIT0

#define calc (4+i)*256

f_led = 1 ‘ Set FLAGREG1’s bit zero to 1.

IF f_led = 1 then f_led = 0 ‘ Make it easier to read.

j = calc ‘Calculations can be simplified

NOTE
#define will not differentiate uppercase and lowercase letters. They will all
be processed as uppercase character. For example, #define ALPHA 0 and
#define alpha 0 are both considered the same.

 146

Conditional
A conditional is a directive that instructs the preprocessor to select whether
or not to include a part of code before compilation. Preprocessor
conditionals can test arithmetic expressions, or whether a name is defined
as a macro, or both simultaneously using the special defined operator.

Here are some reasons to use a conditional.

 A program may need to use different code depending on the
module it is to run on. In some cases the code for one module
may be different on another module. With a preprocessing
conditional, a BASIC program may be programmed to compile on
any of CUBLOC/CuTOUCH modules without making changes to
the source code.

 If you want to be able to compile the same source file into two
different programs. One version might print the values of data for
debugging, and the other not.

#if constant
#endif

The preprocessor directive #if will compare a constant declared with CONST
to another constant. If the #if statement is true, the statements inside the
#if…#endif block will be compiled, otherwise statements will be discarded.

Const Device = CB280

Delay 500
‘ Device only returns the decimal number
#If Device = 220
 Debug "CB220 module used!"
#endif

The above example shows how depending on the module of
CUBLOC/CuTOUCH, you can decided to include a command in the final
compilation of your program. By using conditional directives, you will be
able to manage multiple modules of your CUBLOC/CuTOUCH with just one
source code.

 147

By using preprocessor directive #elseif or #else, you can create more
complex #if…#endif blocks.

Const Device = CB220

Delay 500
‘ Device only returns the decimal number

#If Device = 220
 Debug "CB220 module used!"
#elseif device = 280
Debug "CB220 module used!"
#elseif device = 290
Debug "CB290 module used!"
#elseif device = 1720
Debug "CT1720 module used!"
#endif

#else may only be used ONCE in a #if statement. You may only compare
constants declared with CONST command for the #if statements.

#ifdef name
#endif
When using #if to compare constants, you can use #ifdef to see if a
constant has been defined previously using #define or CONST.
If the constant has been defined previously, the statements inside the
#if…#endif block will be compiled, otherwise it will be discarded.

#define LOWMODEL 0
#ifdef LOWMODEL
 LOW 0
#endif

In the above example, since LOWMODEL is defined, the statement LOW 0 is
compiled.
#else #elseifdef may be used for more complex blocks like shown here:

#ifdef LOWMODEL
 LOW 0
#elseifdef HIGHMODEL
 HIGH 0
#else
 LOW 1
#endif

 148

#ifndef name
#endif
#ifndef is exactly the opposite of #ifdef directive. If a constant has not
been defined, the statements inside #if…#endif block will be compiled,
otherwise statements are discarded.

#define LOWMODEL 0
#ifndef LOWMODEL
 LOW 0
#endif

#elseifndef and #else may be used for more complex blocks like shown
here:

#ifndef LOWMODEL
 LOW 0
#elseifndef HIGHMODEL
 HIGH 0
#else
 LOW 1
#endif

Finally, the directives may be mixed as shown below:

#if MODELNO = 0
 LOW 0
#elseifdef HIGHMODEL
 HIGH 0
#else
 LOW 1
#endif

An exception is that #if may not be used inside another #if.

 149

To use LADDER ONLY

If you do not need to use BASIC, you can just program in LADDER. But
you will need the most basic BASIC-code as shown below:

Const Device = CB280 'Select device

Usepin 0,In,START 'Declare pins to use
Usepin 1,Out,RELAY

Alias M0 = MOTORSTATE 'Set Aliases
Alias M1 = RELAY1STATE

Set Ladder On 'Start Ladder.

Device model, aliases, and pin input and output status must be set in BASIC.
Ladder must be started in BASIC with SET LADDER ON command.

To use BASIC ONLY

Simply use BASIC! Ladder is off as default

Set Ladder On ‘ Just don’t use this command.
Ladderscan ‘ And this one too.

Interrupt
An interrupt can occur during the main program to process immediate
needs of some sort. ON…GOSUB command can be used to set a new
interrupt. When that interrupt occurs, the main program stops execution
and jumps to the label designated by the previous ON…GOSUB command.
Once the interrupt routine in the label is finished, RETURN command is used
to return back to the main program.

MAIN PROGRAM

INTERRUPT
ROUTINE

External Key input can be pressed and RS232 serial data can be received at
any moment. Since the main program cannot wait forever to receive these
inputs, we need interrupts. If a key is pressed or serial data is received
while the Main program is running, an interrupt occurs and the Main
program jumps to an interrupt routine.

CUBLOC possesses one of the most flexible interrupts in the world. While
an interrupt routine is running, another interrupt request of the same
type is ignored. If an RS232 RECV interrupt occurs during execution of an
RS232 RECV interrupt routine, it will be ignored. On the other hand, if an
INT Edge interrupt occurs during execution of an RS232 RECV interrupt
routine, it will be executed immediately before returning to the RS232 RECV
interrupt routine.

Interrupt Type Explanation
On Timer Create interrupt within the set interval
On Int Create interrupt when external input is received.
On Recv Create interrupt when RS232 receives data
On LadderInt Create interrupt when Ladder Logic requests for an interrupt
On Pad Create interrupt when Pad receives data

 150

 151

More about Interrupts…
The CUBLOC and CuTOUCH have RTOS which controls interrupt events.
This is slightly different from microcontroller’s hardware interrupts.

1. When an interrupt A occurs, during the interrupt A, another interrupt A
cannot occur. But a different interrupt B can occur. Here A and B are
different types of interrupts. (e.g. On Timer and On Recv)

2. When an interrupt B occurs during the interrupt A, interrupt B will be
executed immediately and the Main Program will return to interrupt A to
finish.

3. At the end of your interrupt routine, please make sure to include a
Return command. Otherwise, your program can mal-function.

4. There is no limit on the number of interrupts and how long an interrupt

routine may be.

5. Delay, Pulsout commands can be used during an interrupt. BUT,
Delay and Pulsout time may be affected by other interrupts that occur
during its execution. To protect against such situations, please use Set
Onglobal Off before calling Delay or Pulsout command like shown here:

 Set Onglobal Off

 Delay 100 ‘ Delay command not affected

 Set Onglobal On

6. If no interrupt is required for your program, you can actual increase the
execution speed of CUBLOC or CuTOUCH by setting all interrupt off using
the command, Set Onglobal Off.
*By Default, Set Onglobal is set to On.

7. In case of On Recv, data received during an On Recv routine will simply
be stored in the receive buffer. Therefore the data will not be lost. After
the current On Recv interrupt routine is finished, if there’s new data in the
receive buffer, another On Recv interrupt will be called immediately. Bclr
command can be used in case the user does not want to process another
On Recv Interrupt.

8. If you declare an interrupt twice, the last one called will be in effect.

 152

Pointers using Peek, Poke,
and Memadr
Following is an example that uses EEWRITE command and EEREAD
command to read floating point data:

 Const Device = CB280
 Dim f1 As Single, f2 As Single
 f1 = 3.14
 Eewrite 0,f1,4
 f2 = Eeread(0,4)
 Debug Float f2,cr

When you run this code, the debug window will show 3.00000 instead of
3.14. The reason is that EEWRITE command automatically converts
floating point values to whole numbers.

In order to store floating point values, we can use Peek and Poke to read
the data directly. The following is how we would accomplish that:

 Const Device = CB280
 Dim F1 As Single, F2 As Single
 F1 = 3.14
 Eewrite 10,Peek(Memadr(F1),4),4
 Poke Memadr(F2),Eeread(10,4),4

 Debug Float F2,CR

The Debug Window will now show 3.14.

We use Memadr(F1) to find the memory address of F1 and then use Peek
command to directly access the memory and write 4 bytes. We store that
value in EEPOM. Conversely, we use Memadr(F2) and Poke to read 4 bytes
directly.

Warning : Please use caution when using this command as pointers can
affect the whole program. Peek and Poke may only access data memory
SRAM.

Sharing Data
CUBLOC has individual BASIC and LADDER data memory.

BASIC DATA MEMORY LADDER DATA MEMORY

P
M
C
T
D

Variable A
Variable B
Variable C
Variable D
Variable E
Variable F

LADDER data memory can be accessed from BASIC easily by using system
variables. By using these system variables, data can easily be read or
written from and to LADDER.

System Variable

(Array)
Access Units LADDER Register

_P Bits _P(0) ~ P(127) P Register
_M Bits _P(0) ~ P(511) M Register

_WP Words _WP(0) ~ _WP(7) P Register (Word Access)
_WM Words _WM(0) ~ _WM(31) M Register (Word Access)
_T Words _T(0) ~ _T(99) T Register (Timer)
_C Words _C(0) ~ _C(49) C Register (Counter)
_D Words _D(0) ~ _D(99) D Register (Data)

Registers P and M can be accessed in units of bits and the rest of the
Registers C, T, and D can be accessed in units of Words. To access P and M
Registers in units of Words, use _WP and _WD. For example, _WP(0)
represents P0 through P15.

The following is an example program :

 _D(0) = 1234
 _D(1) = 3456
 _D(2) = 100
 FOR I = 0 TO 99
 _M(I) = 0
 NEXT
 IF _P(3) = 1 THEN _M(127) = 1

Reversely, accessing BASIC variables from Ladder is not possible but you
can use Ladder interrupts to get around this.

 153

 154

Use Ladder pins in BASIC using ALIAS command

ALIAS command can be used to set aliases for Registers (all except D)
used in LADDER. Both BASIC and LADDER may freely use these set aliases.

Usepin 0,In,START
Usepin 1,Out,RELAY
Alias M0 = MOTORSTATE
Alias M1 = RELAY1STATE
Alias T1 = SUBTIMER

RELAY = 0 ' Set port 1 to LOW
MOTORSTATE = 1 ' Set M0 to 1. Same as _M(0) = 1.

A = RELAY1STATE ' Store M1 status in variable A.
B = SUBTIMER ' Store T1 status in variable B.

 155

Chapter 7
CUBLOC

BASIC
functions

 156

Math Functions

SIN, COS, TAN
Return Sine, Cosine, and Tangent values. CUBLOC uses radians as units.
Use SINGLE for most precise results.

A=SIN B ‘ Return Sine value.

A=COS B ‘ Return Cosine value.

A=TAN B ‘ Return Tangent value.

ASIN, ACOS, ATAN
Return Arc Sine, Arc Cosine, and Arc Tangent values. CUBLOC uses
radians as units. Use SINGLE for most precise results.

A=ASIN B ‘ Return Arc Sine value.

A=ACOS B ‘ Return Arc Cosine value.

A=ATAN B ‘ Return Arc Tangent value.

SINH, COSH, TANH
Return Hyperbolic Sine, Hyperbolic Cosine, and Hyperbolic Tangent values.

A=SINH B ‘ Return Hyperbolic Sine value of B.

A=COSH B ‘ Return Hyperbolic Cosine value of B.

A=TANH B ‘ Return Hyperbolic Tangent value of B.

SQR Return Square Root value.
A=SQR B ‘ Return square root value of B

EXP Return EX.
A=EXP X ‘Return EX.

LOG, LOG10 Return LOG or LOG10 value.
A=LOG B or A=LOG10 B

Max’s Tips
“For natural logarithm (Ln), simply do: A= Log(B)/Log(Exp(1))”

ABS Return Absolute value.(for long type)

Dim A As Long, B As Long

B = -1234

A=ABS B ‘Return |B|.

Debug Dec A ‘Print 1234

 157

FABS Return Absolute value.(for Single type)
Dim A As Single, B As Single

B = -1234.0

A=FABS B ‘Return |B|.

Debug Float A ‘Print 1234.00

FLOOR Round down to the whole number.
Dim A As Single, B As Single

B = 3.14

A=FLOOR B ‘FLOOR 3.14 gives 3.

Debug Float A ‘Print 3.0

 158

Type Conversion

Type conversion can be used to convert the variable to desired bit
representation.

HEX
Converts the variable to hex (16 bit). HEX8 means to convert to 8 decimal
places. (1 to 8 can be used for decimal places)

DEBUG HEX A ‘if A is 123ABC, 123ABC is printed
DEBUG HEX8 A ‘if A is 123ABC, bb123ABC is printed,
 ‘ b is a blank space in this case.
DEBUG HEX5 A ‘if A is 123ABC, 23ABC is printed, first character
 ‘is cut.

DEC
Converts the variable to a decimal (10 bit). DEC8 means to convert to 8
decimal places. (1 to 11 can be used for decimal places)

DEBUG DEC A ‘ If A is 1234, 1234 is printed.
DEBUG DEC10 A ‘ If A is 1234, bbbbbb1234 is printed,
 ‘ b is a blank space in this case.
DEBUG DEC3 A ‘ If A is 1234, 234 is printed, first
 ‘ character is cut

?
Include the name of the variable by using question mark (?). This question
mark can only be used with HEX or DEC.

DEBUG DEC ? A ‘ If A is 1234, “A=1234” will be printed.
DEBUG HEX ? A ‘ If A is ABCD, “A=ABCD” will be printed.
DEBUG HEX ? B ‘ If B is a sub-routine variable let’s say of
 ‘ sub-routine CONV, “B_@_CONV=ABCD”
 ‘ will be printed. (B is in CONV)

FLOAT
Use FLOAT to convert floating point values to String.

Const Device = cb280
Dim F1 As Single
F1 = 3.14
Debug Float F1,cr ' Print "3.14000".

Dim ST As String * 15
ST = Float F1 ' First store in a String.
ST = Left(ST,3) ' Convert to 3 decimal places
Debug ST ' Print "3.14".

 159

String Functions
String Ructions are provided to assist the user in accessing data within the
String.

DP(Variable, Decimal Places, ZeroPrint)
The command DP converts Variable into decimal String representation.

If ZeroPrint is set to 1, zeros are substituted for blank spaces.

Dim A as Integer
DEBUG DP(A,10,0) ‘ Convert A into decimal String representation.
 ‘ Set display decimal places to 10.
 ‘ If A is 1234, bbbbb1234 will be displayed.
 ‘ (b stands for blank spaces.)
DEBUG DP(A,10,1) ‘ If A is 1234, 0000001234 will be displayed.

HP(Variable, Decimal Places, ZeroPrint)
This command HP converts Variable into hexadecimal String representation.
If ZeroPrint is set to 1, zeroes are substituted for blank spaces.

DEBUG HP(A,4,0) ‘ Convert A into HEX String representation
 ‘ Set display decimal places to 4.
 ‘ If A is ABC, bABC will be displayed.
 ‘ (b stand for blank spaces.)
DEBUG HP(A,4,1) ‘ If A is ABC, 0ABC will be displayed.

LEFT(Variable, Decimal Places)
Cut specified decimal places of the String from the left side and return the
value.

DIM ST1 AS STRING * 12
ST1 = “CUBLOC”
DEBUG LEFT(ST1,4) ‘ “CUBL” is printed.

RIGHT(Variable, Decimal Places)
Cut specified decimal places of the String from the right side and return the
value.

DIM ST1 AS STRING * 12
ST1 = “CUBLOC”
DEBUG RIGHT(ST1,4) ‘ “BLOC” is printed.

 160

MID(Variable, Location, Decimal Places)
Cut specified decimal places starting from the Location specified and return
the value.

DIM ST1 AS STRING * 12
ST1 = “CUBLOC”
DEBUG MID(ST1,2,4) ‘ “UBLO” is printed.

LEN(Variable)
Return the length of the String specified.

DIM ST1 AS STRING * 12
ST1 = “CUBLOC”
DEBUG DEC LEN(ST1) ‘6 is printed since there are 6 characters in ST1.

STRING(ASCII code, length)
Create a specified length String with specified ASCII code value.

DIM ST1 AS STRING * 12
ST1 = STRING(&H41,5)
DEBUG ST1 ‘AAAAA is printed. &H41 is ASCII code for character A.

SPC(decimal places)
Create specified amount of blank space

DIM ST1 AS STRING * 12
ST1 = SPC(5)
DEBUG “A”,ST1,”A” ‘AbbbbbA is printed. Here, b is for blank space.

LTRIM(String variable)
Cut all blank spaces on the left side of the String and return the value.

DIM ST1 AS STRING * 12
ST1 = “ COMFILE”
ST1 = LTRIM(ST1)
DEBUG “AAA”,ST1 ‘ AAACOMFILE is printed.

RTRIM(String variable)
Cut all blank spaces on the right side of the String and return the value.

DIM ST1 AS STRING * 12
ST1 = “COMFILE ”
ST1 = RTRIM(ST1)
DEBUG ST1,”TECH” ‘ COMFILETECH is printed.
 ‘ Blank spaces on the right are removed.

 161

VAL(String variable)
Return a converted numerical value of the String.

DIM ST1 AS STRING * 12
DIM I AS INTEGER
ST1 = “123”
I = VAL(ST1) ‘ 123 is stored in variable I as a number.

VALSNG(String variable)
Return a converted floating point numerical value of the String.

DIM ST1 AS STRING * 12
DIM F AS SINGLE
ST1 = “3.14”
F = VALSNG(ST1) ‘ 3.14 is stored in variable F as a floating
 ‘ point number.

CHR(ASCII code)
Return the character of desired ASCII code.

DIM ST1 AS STRING * 12
ST1 = CHR(&H41)
DEBUG ST1 ‘ Print A,. &H41 is ASCII code of character A.

ASC(String variable or Constant)
Return the converted ASCII code of the first character of the String.

DIM ST1 AS STRING * 12
DIM I AS INTEGER
ST1 = “123”
I = ASC(ST1) ‘ &H31 is stored in variable I. ASCII code of 1
 ‘ is &H31 or 0x31.

 162

Caution 1
A variable must be used when using string functions.

DEBUG LEFT(“INTEGER”,4) ‘ A string by itself cannot be used.
ST1 = “INTEGER”
DEBUG LEFT(ST1,4) ‘ A string must be stored as a variable first.

Caution 2
Please use a constant for the 2nd parameter of string functions LEFT, RIGHT,
MID

DEBUG LEFT(A1,K) ‘Variable K cannot be used.
DEBUG LEFT(A1, 5) ‘A constant must be used.

 163

Chapter 8
CUBLOC

BASIC
Statements

& Library

Adin()
Variable = ADIN (Channel)
 Variable : Variable to store results (No String or Single)
 Channel : AD Channel Number (not I/O Pin Number)

CUBLOC has 10bit ADCs and 16bit PWMs. The user can use ADC to convert
analog to digital signals or use PWM to convert digital to analog signal.

ADIN command reads the analog signal value and store the result in a
variable. Depending on the model, the number of AD ports may vary. For
the CB280, there are 8 AD ports (P24~P31). The AD port must be set to
input before use.

When voltage between 0 and AVREF in inputted, that voltage is converted
to a value from 0 to 1023. AVREF can accept voltage between 2~5 V.
Generally, 5V is used. If the user inputs 3V to AVREF, voltage between 0
and 3V is converted to a value between 0 and 1023.
(*Note: CB220 AVREF is fixed to 5V)

Return value

Input voltage0V
0

1023

5V

Dim A As Integer
Input 24 ‘ Set port to input.
A=Adin(0) ‘ Do a A/D conversion on channel 0 and
 ‘ store result in A

 164

The following is AD input ports shown according to the model.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

AD INPUT
PORT

SOUT
SIN

ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

AD INPUT
PORT

Please refer to the table below for AD channels.

Channel/Model CB220 CB280 CB290 CT17X0

A/D channel 0 I/O 0 I/O 24 I/O 8 I/O 0
A/D channel 1 I/O 1 I/O 25 I/O 9 I/O 1
A/D channel 2 I/O 2 I/O 26 I/O 10 I/O 2
A/D channel 3 I/O 3 I/O 27 I/O 11 I/O 3
A/D channel 4 I/O 4 I/O 28 I/O 12 I/O 4
A/D channel 5 I/O 5 I/O 29 I/O 13 I/O 5
A/D channel 6 I/O 6 I/O 30 I/O 14 I/O 6
A/D channel 7 I/O 7 I/O 31 I/O 15 I/O 7

ADIN command only converts once upon execution. In comparison TADIN
returns the average of 10 conversions, there by giving the user more
precise results. If you need more precision, we recommend the use of
TADIN instead of ADIN.

 165

 166

Alias
ALIAS Registername = AliasName
 Registername : Register name such as P0, M0, T0 (Do not use D area)
 AliasName : An Alias for the Register chosen (up to 32 character)

Aliases may be made up for Registers like P0, M0, C0. With Aliases, the
user will be able to write more clear and easy-to-read code.

Alias M0 = Rstate
Alias M0 = Kstate
Alias P0 = StartSw

 167

Bcd2bin
Variable = BCD2BIN(bcdvalue)
 Variable : Variable to store results (Returns LONG)
 bcdvalue : BCD value to convert to binary

This command does the exact opposite of BIN2BCD command.

Dim A As Integer
A=Bcd2bin(&h1234)
Debug Dec A ‘ Print 1234

 168

Bclr
BCLR channel, buffertype
 channel : RS232 Channel (0~3)
 buffertype : 0=Receive, 1=Send, 2=Both

Clear the specified RS232 Channel’s buffer. Buffer type can be chosen.

Bclr 1,0 ‘ Clear RS232 Channel 1’s rx buffer
Bclr 1,1 ‘ Clear RS232 Channel 1’s tx buffer
Bclr 1,2 ‘ Clear RS232 Channel 1’s rx & tx buffers

Beep
BEEP Port, Length
 Port : Port number (0~255)
 Length : Pulse output period (1~65535)

The BEEP command is used to create a beep sound. Piezo or a speaker can
be connected to the Port. A short beep will be outputted. This is useful for
creating Key touch sound effects or alarm sounds. When this command is
used, the specified Port is automatically set to output.

BEEP 2, 100 ‘Output BEEP on P2 for a period of 100

PIEZO

 169

Bfree()
Variable = BFREE(channel, buffertype)
 Variable : Variable to store results (No String or Single)
 channel : RS232 Channel number (0~3)
 buffertype: 0=Receive Buffer, 1=Send Buffer

This function will return the number of free bytes that either receive buffer
or send buffer has currently. For sending data, this command can be used
to avoid overflowing the buffer.

DIM A AS BYTE
OPENCOM 1,19200,0, 100, 50
IF BFREE(1,1)>10 THEN
 PUT “TECHNOLOGY”
END IF

If buffer size is set to 50, up to 49
free bytes can be returned. The
function will return 1 less than the
set buffer size when buffer is empty.

 170

Bin2bcd
Variable = BIN2BCD(binvalue)
 Variable : Variable to store results (Returns Long)
 binvalue : Binary value to be converted

This command BIN2BCD converts binary value to BCD code. BCD code is a
way of expressing binary values as decimals.

For example. 3451 in binary is as shown below:

3 4 5 1

0 D 7 B
0 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1

The below is 3451 converted to BCD code. As you can see, each 4 bits
represent one of the digits.

3 4 5 1

3 4 5 1
0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 1

This command is useful when the user needs to convert a variable to be
representable in a device such as the 7 segment display.

 i = 123456
 j = bin2bcd(i)
 Debug Hex j ‘ Print 123456

 171

 172

Blen()
Variable = BLEN(channel, buffertype)
 Variable : Variable to store results (No String or Single)
 channel : RS232 Channel number (0~3)
 buffertype: 0=Receive Buffer, 1=Send Buffer

This function Blen() returns current number of bytes of data in the specified
RS232 Channel’s buffer. If the buffer is empty, 0 will be returned. When
receiving data, this function can be used to check how much data has been
received before using GET or GETSTR to read the data received.

If the receive buffer is full, it will not be able to receive any more data. To
avoid these situations, receive interrupts should be used or plenty of receive
buffer size should be used.

Dim A As Byte
Opencom 1,19200,0,100,50
On Recv1 DATARECV_RTN ' When data is received through
 ' RS232, jump to DATARECV_RTN
Do
Loop ' infinite loop

DATARECV_RTN:
 If Blen(1,0) > 0 Then ' If there is at least 1 byte...
 A = Get(1) ' Read 1 Byte
 End If
Return ' End Interrupt routine

Bytein()
Variable = BYTEIN(PortBlock)
 Variable : Variable to store results (No String or Single)
 PortBlock : I/O Port Block Number (0~15)

Read the current status of the I/O Port Block. 8 I/O ports are collectively
called as a Port Block. Port 0~7 is Block 0 and Port 8~15 is Block 1.
Depending on the model of CUBLOC, the Port Block number can vary.
When using this command, all I/O Ports within the Port Block are set to
input and the received input value is stored in a variable..

DIM A AS BYTE
A = BYTEIN(0) ‘Read from Port Block 0 and store in variable A.

The following is how Port Blocks are set according to the CUBLOC model.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

BLOCK 0 BLOCK 1

SOUT
SIN

ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

0 2
3

45
1

 173

 174

Byteout
BYTEOUT PortBlock, value
 PortBlock : I/O Port Block Number. (0~15)
 value : Value to be outputted between 0 and 255.

Output the value to a Port Block. 8 I/O Ports are collectively called as a
Port Block.
Port 0~7 is Block 0 and Port 8~15 is Block 1. Depending on the model of
CUBLOC, the Port Block number can vary. When using this command, all
I/O Ports within the Port Block are set to output and the value is outputted.

Byteout 1,255 ‘ Output 255 to Port Block 1.
 ‘ Ports 8 through 15 are set to HIGH.

* I/O Port 1 only supports input. Therefore, BYTEOUT 0 will not set Port 1
to Output.

 175

CheckBf()
Variable = CheckBf(channel)
 Variable : Variable to store results (No String or Single)
 channel : RS232 Channel (0~3)

Without affecting the RS232 receive buffer, the command CheckBf() can be
used to check the current data in the receive buffer. Although it will read
what is in the buffer, it will not erase the data after reading unlike the GET
command. Only 1 byte can be read at a time.

A = Checkbf(1) ‘Check current data in the receive buffer

Count()
Variable = COUNT(channel)
 Variable : Variable to store results. (No String or Single)
 Channel : Counter Channel number (0~3)

Return the counted value from the specified Count Channel. Please set the
Counter Input Ports to input before use of this command.
Up to 32bits can be counted. (Byte, Integer, Long) Maximum frequency is
500kHz.

CUBLOC’s counter is hardware driven, meaning it runs independently from
the main program. It is able to count in real-time. No matter how busy
the CUBLOC processor gets, counter will count reliably.

CUBLOC has 2 Counter inputs. Counter Channel 0 uses same resources as
PWM0, 1, 2 and cannot be used together. But you are free to use Counter
Channel 1 as freely as you’d like. To use Counter Channel 0, SET COUNT0
command must be used beforehand. Channel 1 requires no additional
settings.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

COUNT 1
COUNT 0

Dim R As Integer
Input 15 ' Set port 15 as input. (Counter Channel 1)
R = Count(1) ' Read current Counter value.

Set Count0 On ' Activate Counter Channel 0
 ' (PWM0,1,2 becomes deactivated.)
Input 14 ' Set port 14 as input (Counter Channel 0)
R = Count(0) ' Read current Counter value.

 176

Since counter 0 uses the same resources as Pwm as shown below, please
be careful. Not to use PWM at the same time.

PWM0

COUNTER 0

TIMER A

TIMER B

PWM1

PWM2

PWM3

PWM4

PWM5

‘
‘ Measure frequency from pulse output PWM 0 channel
‘
Const Device = CB280
Dim A as Integer
Input 15
Low 5
Freqout 0,2000
Low 0
On Timer(100) Gosub GetFreq
Do
Loop

GetFreq:
A = Count(1)
Debug goxy,10,2
Debug dec5 A
Countreset 1
Reverse 0
Return

 177

 178

Countreset
COUNTRESET channel
 Channel : Counter Channel (0~3)

Reset the specified Counter Channel to 0.

Countreset 0 ‘Clear Channel 0
Countreset 1 ‘Clear channel 1

 179

Dcd
Variable = DCD source
 Variable : Variable to store results. (No String or Single)
 Source : source value

This command DCD is opposite of NCD command.
It will return the bit position(starting at LSB bit 0) of the highest bit that is a
1.

I = DCD 15 ‘ Result is 3 since 15 = 0b00001111

Debug
DEBUG data
 data : data to send to PC

CUBLOC supports DEBUG command by allowing the user to insert DEBUG
commands as he wishes during the execution of a program.
The results of DEBUG commands inserted in the source code is displayed on
the DEBUG Terminal.

DIM A AS INTEGER

A = 123

DEBUG DEC A

Use DEC or HEX to display numbers. Without DEC or HEX, the numbers
will be printed as ASCII codes. Please use DEC or HEX for variables to see
the actual values.
If you insert question mark (?) before DEC or HEX, the variable’s name will
be printed together.

DEBUG DEC? A,CR

DEBUG HEX? A,CR

 180

You can also use numbers to limit the number of decimal places to print.

DEBUG HEX8 A

1 through 8 can be used with HEX. HEX8 will print as 8 digit hexadecimal
number. 1 through 10 can be used with DEC.

You are free to mix strings, numbers, and etc…

DEBUG “CHECK VALUE “ HEX? A, CR

DEBUG command is useful for printing out strings and numbers in a user
friendly format. During execution of CUBLOC BASIC program, when
DEBUG command is encountered, the resulting values are displayed on the
DEBUG Terminal.

 181

 182

If you insert a DEBUG command to a certain part of the program and the
DEBUG Terminal displays the values during execution, it proves that the
program has executed to that point. By using these DEBUG commands,
you will be able to find bugs in your program and monitor variables change
in real-time.

If you enter character in the white part of the Debug Terminal, it will be
sent to the DOWNLOAD port of CUBLOC. We have added this feature for
future/advanced development.

Warning
DEBUG command may not be used while monitoring in Ladder Logic.
Likewise, Ladder Logic monitoring can not be used while debugging using
DEBUG commands.

The following is a chart of commands that can be used with the DEBUG
command. You can control the DEBUG screen just like a real LCD.

Command Code Explanation Example Usage
CLR 0 Clear Debug screen Debug CLR
HOME 1 Move cursor to the upper left corner of

the Debug screen
Debug HOME

GOXY 2 Move cursor to X, Y Debug GOXY, 4, 3
CSLE 3 Move cursor one to the left.
CSRI 4 Move cursor one to the right
CSUP 5 Move cursor one up
CSDN 6 Move cursor one down
BELL 7 Make beeping sound
BKSP 8 BACK SPACE
LF 10 LINE FEED Debug “ABC”,LF
CLRRI 11 Erase all characters on the right of

cursor to the end of line.

CLRDN 12 Erase all characters on the bottom of
cursor

CR 13, 10 Carriage Return (go to next line) Debug, “ABC”,CR

You must use above commands in line with the DEBUG command.

 Debug Goxy,5,5,Dec I
 Debug Clr,”TEST PROGRAM”

 183

Decr
DECR variable
 Variable : Variable for decrementing. (No String or Single)

Decrement the variable by 1. (similar to “A - -“ in C language)

Decr A ‘ Decrement A by 1.

 184

Delay
DELAY time
 Time : interval variable or constant

Delay for the specified time in milliseconds. Delay should be only used for
slight delays in getting something to work. We recommend not using it for
time measurements and time-specific applications.

Delay 10 ‘ Delay about 10 ms.
Delay 200 ‘ Delay about 200 ms.

Delay is pre-made system’s sub program.

 sub delay(dl as long)
 dl1 var long
 dl2 var integer
 for dl1=0 to dl
 for dl2=0 to 1

 nop
 nop
 nop

 next
 next
 end sub

 185

Do...Loop
DO...LOOP will loop the commands within itself unless DO WHILE or DO
UNTIL is used to set a condition in which DO…LOOP can be terminated.
EXIT DO command can also be used within the DO...LOOP to exit from the
loop.

Do
 Commands
Loop

Dim K As Integer
Do
 K=Adin(0) ‘Read AD input from channel 0
 Debug Dec K,Cr
 Delay 1000
Loop

In the above example, the program will loop infinitely within DO and LOOP.
EXIT DO or GOTO command must be used to get out of the infinite loop.

Do While [Condition]
 Commands
 [Exit Do]
Loop

Do
 Commands
 [Exit Do]
Loop While [Condition]

DO..WHILE will infinitely loop until condition in WHILE is met.

Do Until [Condition]
 Commands
 [Exit Do]
Loop

Do
 Commands
 [Exit Do]
Loop Until [Condition]

DO..UNTIL will infinitely loop until condition in UNTIL is met.

 186

Dtzero
DTZERO variable
 Variable : Variable for decrement. (No String or Single)

Decrement the variable by 1. When variable reaches 0, the variable is no
longer decremented.

DTZERO A ‘ Decrement A by 1.

 187

Eeread()
Variable = EEREAD (Address, ByteLength)
 Variable : Variable to store result (No String or Single)
 Address : 0 ~ 4095
 ByteLength : Number of Bytes to read (1~4)

Read data from the specified address in EEPROM.

DIM A AS INTEGER
DIM B AS INTEGER
A = 100
EEWRITE 0,A,2 ‘ Store A in Address 0.
B = EEREAD(0,2) ‘ Read from Address 0 and store in B.

EAdin()
Variable = EADIN (mux)
 Variable : Variable to store results (No String or Single)
 mux : AD input Port Combination MUX (0~21)

This command is used for a more precise AD conversion. CUBLOC has an
internal OPAMP. When using ADIN command, the OPAMP is not used. By
using this command EAdin, the user can utilize the OPAMP for more precise
results.

ADC

OP AMP.

Please set the MUX value accordingly by following the chart below:

MUX OPAMP + OPAMP - Multiplier
0 ADC0 ADC0 10
1 ADC1 ADC0 10
2 ADC0 ADC0 200
3 ADC1 ADC0 200
4 ADC2 ADC2 10
5 ADC3 ADC2 10
6 ADC2 ADC2 200
7 ADC3 ADC2 200
8 ADC0 ADC1 1
9 ADC1 ADC1 1
10 ADC2 ADC1 1
11 ADC3 ADC1 1
12 ADC4 ADC1 1
13 ADC5 ADC1 1
14 ADC6 ADC1 1
15 ADC7 ADC1 1
16 ADC0 ADC2 1
17 ADC1 ADC2 1
18 ADC2 ADC2 1
19 ADC3 ADC2 1
20 ADC4 ADC2 1
21 ADC5 ADC2 1

 188

 189

The EADIN port must be set to input beforehand. By using the OPAMP,
more precise results or a noise-filtering effect can be obtained.

Dim J As Long
Input 24 'Set the port to input (Use port 24,25 for CB280)
Input 25
Do
 j = Eadin(8) ' AD Conversion from AD0 and Ad1, use OPAMP, 1
 Locate 0,0
 Print hex5 J,cr ' Print results to LCD
 Delay2 500 ' Little Delay
Loop
End

Sub Delay2(DL As Integer)
 Dim I As Integer
 For I = 0 To DL
 Next
End Sub

 190

Eewrite
EEWRITE Address, Data, ByteLength
 Address : 0 to 4095
 Data : Data to write to EEPROM (up to Long type values)
 ByteLength : Number of Bytes to write (1~4)

Store data in the specified Address in EEPROM.

Dim A As Integer
Dim B As Integer
A = 100
Eewrite 0,A,2 ' Store A in Address 0.
B = Eeread(0,2) ' Read from Address 0 and store in B.

When writing to the EEPROM, it takes about 3 to 5 milliseconds.
When reading from the EEPROM, it takes less than 0 milliseconds.
There is a physical limit of around 100,000 writes to the EEPROM.

If you are using EEPROM for data acquisition or data that requires a lot of
writes, we rather recommend use of the data memory with backup battery
included modules such as the CB290.

The following is a table showing comparisons betweens SRAM and EEPROM.

Type Battery Backup SRAM EEPROM
Life of Data 3 Months to 1 Year

(Depending on Battery
Capacity)

40 Years

Maximum Writes Infinite About 100,000
Writing Time 0 ms 3 to 5 ms
General use Backup Necessary Equipment

in the case of power outage.
Example) Production Line
Counter

Small amount of data to
record.
Long data life requirement.
Example) Product Serial
Number

Ekeypad
Variable = EKEYPAD(portblockIn, portblockOut)
 Variable : Variable to store results (Returns Byte)
 PortblockIn : Port Block to receive input (0~15)
 PortblockOut : Port Block to output (0~15)

This command EKEYPAD extends KEYPAD to read up to 64 key inputs. Two
Port Blocks can be used to read up to 64 key inputs. Input Port Block and
output Port Block must be selected separately.

For ports not used within the input Port Block, a resistor must be connected
to 5V. This Port may not be used for other purpose when using this
command.

For ports not used within the output Port Block, they can be left in OPEN
state. This Port also may not be used for other purposes. The following is
an example of using Port Block 0 as input and Port Block 1 as output.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

If no keys are pressed, 255 will be returned. Otherwise, the pressed key’s
scan code will be returned.

 191

 192

For...Next

FOR…NEXT will loop the commands within itself for a set amount of times.

For Variable = Starting Value To Ending Value [Incremental Step]

 Commands

 [Exit For]

Next

In the below example, Incremental Step is not set. FOR…NEXT loop will
increment 1 every loop as default.

Dim K As Long
For K=0 To 10
 Debug Dp(K),CR
Next

For K=10 To 0 Step –1 ‘ Negative Step, step from 10 to 0.
 Debug Dp(K),CR
Next

EXIT FOR command can be used within the FOR…NEXT loop to exit any
desired moment.

For K=0 To 10
 Debug Dp(K),CR
 If K=8 Then Exit For ‘ If K equals 8 exit the FOR…NEXT loop.
Next

When choosing a variable to use for FOR…NEXT loop, please make sure the
chosen variable is able to cover desired range. Byte variables can cover
from 0 to 255. For larger values, a variable with larger range must be
chosen.

Dim K As Byte
For K=0 To 255
 Debug Dp(K),CR
Next

When using negative STEP, please choose LONG as it can handle negative
numbers.

Dim LK As Long
For LK=255 To 0 Step –1 ‘This will reach -1 as last step
 Debug Dp(LK),CR
Next

 193

Freqout
FREQOUT Channel, FreqValue
 Channel : PWM Channel (0~15)
 FreqValue : Frequency value between 1 and 65535

Output desired frequency to the desired PWM channel. Please make sure
to specify the PWM channel, not I/O port number. For CB220 and CB280,
ports 5,6, and 7 are PWM Channel 0,1, and 2, respectively.

The following is a basic chart showing the different FreqValues and
corresponding frequencies. 1 is for the highest possible frequency and
65535 is for the lowest possible frequency. 0 does not produce any output.

FreqValue Frequency FreqValue Frequency
1 1152 KHz 200 11.52 KHz
2 768 kHz 1000 2.3 KHz
3 576 KHz 2000 1.15 KHz
4 460.8KHz 3000 768 Hz
5 384 KHz 4000 576 Hz
10 209.3 KHz 10000 230 Hz
20 109.7 KHz 20000 115.2 Hz
30 74.4 KHz 30000 76.8 Hz
100 22.83 KHz 65535 35.16 Hz

You can also calculate the FreqValue to use by using the following formula:

FreqValue = 2304000 / Desired Frequency

Before using this command, please set the specified PWM Port to output
mode. To stop PWM, you can use the command PWMOFF.
The following is an example:

Const Device = cb280
Dim i As Integer
Low 5 ‘ Set Port 5 to low and output.
i = 1
Freqout 0,10 ‘ Produce a 209.3Khz wave
Do ‘ Infinite loop
Loop

Since Freqout uses the same resources as PWM, there are a couple of
restrictions you must be aware of. PWM Channel 0,1, and 2 use the same
timer. If PWM Channel 0 is used for Freqout command, channel 0,1, and 2
all cannot be used for PWM command.

Likewise, PWM Channel 3, 4, and 5 act the same. If you use Freqout on
PWM Channel 3, PWM Channels 3, 4, and 5 cannot be used for PWM
command.

You can product different frequencies on PWM Channel 0 and 3.

To sum up, the user may produce two different frequencies at one time and
when using the Freqout command, the PWM command cannot be used.

The following is a chart that shows corresponding FreqValue to the music
notes.

Note Octave 2 Octave 3 Octave 4 Octave 5
A 20945 10473 5236 2618
Bb 19770 4942 9885 2471
B 18660 9330 4665 2333
C 17613 8806 4403 2202
Db 16624 8312 4156 2078
D 1961 15691 7846 3923
Eb 14811 7405 1851 3703
E 13979 6990 3495 1747
F 13195 6597 3299 1649

Gb 12454 3114 6227 1557
G 11755 2939 5878 1469
Ab 11095 5548 2774 1387

Freqout 0,5236 ‘ Note A in Octave 4(440Hz)
Freqout 0,1469 ‘ Note G in Octave 5

 194

 195

Get()
Variable = GET(channel, length)
 Variable : Variable to store results (Cannot use String, Single)
 channel : RS232 Channel (0~3)
 length : Length of data to receive (1~4)

Read data from RS232 port. This command Get() actually reads from the
receive buffer. If there is no data in the receive buffer, it will quit without
waiting for data.
The command BLEN() can be used to check if there is any data in the
receive buffer before reading trying to read data.
The length of data to be read must be between 1 and 4. For receiving a
Byte type data, it would be one. For receiving a Long type data, it would
be 4. For larger data, please use GETSTR().

TIPS
Use SYS(1) after GET() or GETSTR() to verify how much data was actually
read. If 5 bytes were received and only 4 bytes got verified, 1 byte was lost.

Const Device = cb280
Dim A as Byte
Opencom 1,115200,3,50,10
On Recv1 Gosub GOTDATA
Do
 Do while In(0) = 0
 Loop ‘ Wait until press button (Connect P0)
 Put 1,asc(“H”),1
 Put 1,asc(“E”),1
 Put 1,asc(“L”),1
 Put 1,asc(“L”),1
 Put 1,asc(“O”),1
 Put 1,13,1 ‘ HELLO + Chr (13) + Chr (10)
 Put 1,10,1
 Do while In(0) = 1
 Loop
Loop

GOTDATA:
 A=Get(1,1)
 Debug A
 Return

 196

Getstr()

 length : Length of data to receive

Variable = GETSTR(channel, length)
 Variable : String Variable to store results
 channel : RS232 Channel

Same as Get() except the variable to store results can only be String and
length of data is not limited.

Const Device = cb280
Dim A As String * 10
Opencom 1,115200,3,50,10
Set Until 1,8
On Recv1 Gosub GOTDATA
Do
 Do While In(0) = 0
 Loop ' Wait until press button (Connect P0)
 Putstr 1,"CUBLOC",Cr
 Do While In(0) = 1
 Loop
Loop

GOTDATA:
 A=Getstr(1,8)
 Debug A
 Return

Geta
GETA channel, ArrayName, bytelength
 channel : RS232 Channel (0~3)

 197

 ArrayName : Array to store Received data (No String or Single)

The command Geta can be used to store received RS232 data into a Byte
array. Data will be stored starting from the first element of the array.
Again, please check the receive buffer with BLEN() before reading to avoid
reading garbage data.

 Bytelength : Number of Bytes to store (1~65535)

Const Device = cb280
Dim A(10) As Byte
Opencom 1,115200,3,50,10
Set Until 1,8
On Recv1 Gosub GOTDATA
Do
 Do While In(0) = 0
 Loop ' Wait until press button (Connect P0)
 Putstr 1,"CUBLOC",Cr
 Do While In(0) = 1
 Loop
Loop

GOTDATA:
 Geta 1,A,8
 Debug A(0),A(1),A(2),A(3),A(4),A(5),A(6),A(7)
 Return

 198

Gosub..Return
GOSUB command can call a sub-routine. RETURN command must be used
at the end of the sub-routine.

 GOSUB ADD_VALUE

ADD_VALUE:
 A=A+1
 RETURN

Goto
GOTO command will instruct the current Program to jump to specified label.
This is part of every BASIC language but we do not recommend the use of
GOTO as it can interfere with structural programming.

 If I = 2 Then
 Goto LAB1
 End If
LAB1:
 I = 3

A Label can be set with character ‘:’ to set a point for GOTO or GOSUB to
jump to.

LINKPOINT:

Below are some not-to-do examples:

123: ‘Number.

About Label…

ADD_VALUE:

A label cannot use reserved constants, numbers, or included a blank space.

Ladder: ‘Reserved constant

Aboot 10: ‘Blank space.

High
HIGH Port
 Port : I/O Port number

Set the Port to HIGH state. This command sets the Port to output state
and outputs HIGH or 5V.

OUTPUT 8 ‘Set Port 8 to output state.
HIGH 8 ‘Set Port 8 to HIGH (5V).

When a port is set to High, the port is internally connected to VDD, whereas
if it’s set to Low, the port is internally connected to VSS.

 199

I2Cstart

 200

I2CSTART

Set I2C SDA and SCL to Start mode. After this command, SDA and SCL go
LOW.

SDA

START

SCL

I2Cstop
I2CSTOP

Set I2C SDA and SCL to Stop mode. After this command, SDA and SCL go
HIGH.

SDA

STOP

SCL

 201

Variable = I2CREAD(dummy)
I2Cread()
 Variable : Variable to store results. (No String or Single)
 dummy : dummy value. (Normally 0)

Read a byte from the I2C Ports set by SET I2C command. Use any value
for dummy value.

A = I2CREAD(0)

Send one byte of data through I2C. This command creates Acknowledge
pulse and returns 0 if there is acknowledgement and 1 if there isn’t. If
there is no acknowledgement, it could mean two things. Either I2C lines
are not connected properly or power is not supplied correctly. In case this
happens, please setup an error processing function such as below:

I2Cwrite()
Variable = I2CWRITE data

Variable : Acknowledge
(0=Acknowledged, 1=No Acknowledgement)

 data : data to send (Byte value : 0~255)

IF I2CWRITE(DATA)=1 THEN GOTO ERR_PROC

When you don’t need to check for acknowledgement you can just use any
variable to receive the acknowledgement as shown below:

A = I2CWRITE(DATA)

One byte of data transfer takes approximately 60 micro-seconds.
Please refer to Chapter 8 “About I2C…” for detailed I2C communications
description.

 202

If..Then..Elseif…Endif
You can use If…Then…Elseif...Else…EndIf conditional statements to set
conditions for your program.

If Condition1 Then [Expression1]
 [Expression2]
[Elseif Condition2 Then
 [Expression3]]
[Else
 [Expression4]]
[End If]

Usage 1
 If A<10 Then B=1

 ‘* do not put any Expressions after “Then”.

If A<10 Then

Usage 5

Usage 2
 If A<10 Then B=1 Else C=1

Usage 3
 If A<10 Then ‘* When using more than 1 line of if,
 B=1
 End If

Usage 4

 B=1
 Else
 C=1
 End If

 If A<10 Then
 B=1
 Elseif A<20 Then
 C=1
 End If

Usage 6
If A<10 Then

 B=1
 Elseif A<20 Then
 C=1
 Elseif A<40 Then
 C=2
 Else
 D=1
 End If

 203

Read the current state of the specified Port. This function reads the state of
the I/O Port and stores it in the Variable. When you execute this command,
CUBLOC will automatically set the Port to input and read the status. You do
not need to use Input command to set the Port beforehand when using this
command.

In()
Variable = IN(Port)
 Variable : The variable to store result (No String or Single)
 Port : I/O Port number (0~255)

DIM A AS BYTE
A = IN(8) ‘ Read the current state of Port 8
 ‘ and store in variable A(0 or 1)

TIPS
All CUBLOC I/O ports support both input/output. You have many options in
setting the Port status to input or output. By default, all I/O Ports are set
to HIGH-Z at power ON.
When Port is set to output, it will either output HIGH or LOW signal. HIGH
is 5V and LOW is 0V or GND (ground).

 204

Incr
INCR variable
 Variable : Variable for increment. (No String or Single)

Increment the variable by 1.

INCR A ‘Increment A by 1.

 205

Input
INPUT Port
 Port : I/O Port number (0~255)

Set the specified Port to High-Z (High Impedance) input state.
All I/O Ports of CUBLOC module are set to HIGH-Z input as default at power
ON.
High Impedance means that the value of resistor is so high that it’s neither
HIGH nor LOW.

INPUT 8 ‘Set Port 8 to HIGH-Z input state.

Keyin
Variable = KEYIN(Port, debouncingtime)
 Variable : Variable to store results (No String or Single)
 Port : Input Port (0~255)
 deboucingtime : Debouncing Time (1~65535)

 206

This command KEYIN removes bouncing effect before reading the input.
You can use KEYIN only when inputting LOW ACTIVE as shown below. For
inputting HIGH ACTIVE, please use KEYINH. When there’s input, Keyin will
return 0 and 1 when there isn’t.

If you use 10 for deboucing time, CUBLOC will check input for bouncing for
10 ms. Bouncing usually lasts around 10ms, so our recommendation is
10ms for most applications

A = KEYIN(1,10) ‘Read from port after removing bouncing effect.

Bouncing effect

Keyinh
Variable = KEYINH(Port, debouncingtime)
 Variable : Variable to store results (No String or Single)
 Port : Input Port (0~255)
 deboucingtime : Debouncing Time (0~65535)

KEYINH is for HIGH ACTIVE inputs. For LOW ACTIVE inputs, KEYIN
command must be used.
When there’s input, Keyinh will return 1 and 0 when there isn’t.

A = KEYINH(1,100) ‘Read from port 1 after removing bouncing effect.

Keypad
Variable = KEYPAD(PortBlock)
 Variable : Variable to store results (Returns Byte, No String or Single)
 PortBlock : Port Block (0~15)

 207

Use this command Keypad to read input from keypad. A Port Block can be
used to read a 4 by 4 keypad input. Keypad input can be connected to the
lower 4 bits of the Port Block and keypad output can be connected to higher
4 bits of the Port Block.
Please refer to the below diagram.

0

1

2

3

4

5

6

7

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

A = KEYPAD(0) ‘ Read the status of keypad connected to Port Block 0

If no keys are pressed, 255 will be returned. Otherwise, the pressed key’s
scan code will be returned.

 208

This command LadderScan will force 1 scan of LADDER. When put inside an
infinite loop like DO…Loop, it can enhance the speed of Ladder program
more than 10 ms per scan time.

Ladderscan
LADDERSCAN

If using this command as shown below, you will not be able to use BASIC at
the same time.

Const Device = CB280 'Device Declaration
Usepin 0,In,START 'Port Declaration
Usepin 1,In,RESETKEY
Usepin 2,In,BKEY
Usepin 3,Out,MOTOR
Alias M0=RELAYSTATE 'Aliases
Alias M1=MAINSTATE
Do
 LadderScan
Loop

Low
LOW Port
 Port : I/O Port number (0~255)

Set the Port to LOW state. This command sets the Port to output state and
outputs LOW or 0V (GND).

OUTPUT 8 ‘Set Port 8 to output state.
LOW 8 ‘Set Port 8 to LOW (0V).

When a port is set to High, the port is internally connected to VDD, whereas
if it’s set to Low, the port is internally connected to VSS.

 209

 210

Memadr()
Variable = MEMADR (TargetVariable)
 Variable : Variable to store results (No String or Single)
 TargetVariable : Variable to find physical memory address

Like C language, you can use pointers in BASIC. By using pointers, you will
be able to find the physical memory address of RAM and use it to store or
read data.

Dim A as Single
Dim Adr as Integer
Adr = Memadr(A) ‘Return the physical address of A.

 211

Ncd
Variable = NCD source
 Variable : Variable to store results. (No String or Single)
 Source : source value (0~31)

The command NCD can use used to set desired bit of 0x00000000 to 1 and
return a 32 bit value.

I = NCD 0 ‘Result is 00000001 = 1
I = NCD 1 ‘Result is 00000010 = 2
I = NCD 2 ‘Result is 00000100 = 4
I = NCD 3 ‘Result is 00001000 = 8
I = NCD 4 ‘Result is 00010000 = 16
I = NCD 5 ‘Result is 00100000 = 32
I = NCD 6 ‘Result is 01000000 = 64
I = NCD 7 ‘Result is 10000000 = 128

 212

Nop
Nop
This command does a no operation command. It simply takes up one
command cycle time.

Low 8
Nop
High 8 ‘Output very short pulse to port 8. (About 50 micro Sec)
Nop
Low 8

On Int
ON INTx GOSUB label
 x : 0 to 3, External Interrupt Channel

This command On Int must be called before accepting external interrupt
inputs. CUBLOC has 4 external interrupt Ports. The interrupt Ports can be
set to sense input on the Rising-edge, Falling Edge, and Both.

SET ONINTx command must be used with this command in order for the
interrupt to work.

*CB220 has no external interrupt inputs.

Rising Edge Falling Edge

Dim A As Integer
On INT0 Gosub GETINT0
Set INT0 0 'Falling Edge Input
Do
Loop

GETINT0:
A=A+1 'Record number of interrupts
Return

 213

On Ladderint Gosub

 214

ON LADDERINT GOSUB label

Please use the SETOUT and DIFU command to write 1 to the Register F40.
When BASIC interrupt routine is finished, Register F40 can be cleared by
writing a zero to it.

If Register F40 turns on in LADDER, and ON LADDERINT GOSUB command
is used, then the processor will jump to the routine specified by On
Ladderint command.
This can be used when LADDER part of the program needs to jump to
BASIC code.

During the interrupt routine execution, writing a 1 to Register F40 will not
allow another interrupt. If Register F40 is cleared from BASIC, it signs the
end of the interrupt routine and is ready to receive another interrupt.

 Usepin 0,In
 Set Ladder On
 Set Display 0,0,16,77,50
 On Ladderint Gosub msg1_rtn
 Dim i As Integer
 Low 1

 Do
 i=i+1
 Byteout 1,i
 Delay 200
 Loop
msg1_rtn:
 Locate 0,0
 Print "ON Ladderint",Dec i
 Reverse 1
 Return

When P0 turns ON, it will turn on F40 and when Register F40 turns ON,
msg1_rtn interrupt routine in BASIC will be executed. In the interrupt
routine, a string is printed to the LCD.

Although there is only one Register F40 to create an interrupt in BASIC from
LADDER, we can use data Register D to process many different types of
interrupts.

When P0 turns ON, D0 gets 3 and interrupt routine is executed. If P2 turns
ON, D0 gets 2 and interrupt routine is executed. In the interrupt routine,
the user can then process the type of interrupt based on the value stored in
D0.

msg1_rtn:
 If _D(0)=3 Then
 Locate 0,0
 Print "ON Ladderint",Dec i
 End If
 If _D(0)=2 Then
 Locate 0,0
 Print "TEST PROGRAM",Dec i
 End If
 Return

For short version of above LADDER commands, the user can use INTON
command, which accomplishes both WMOV and SETOUT in one command.
The following is the equivalent shortened version of the above ladder:

 215

 216

On Pad Gosub
ON PAD GOSUB label

You can set the packet size using SET PAD command. The ON PAD
interrupt will jump to the label when the buffer amount is equal to the set
packet size. Please make sure to use RETURN command after the label.

 Const Device = Ct1720
 Dim TX1 As Integer, TY1 As Integer
 Contrast 450
 Set Pad 0,4,5
 On Pad Gosub GETTOUCH
 Do
 Loop

GETTOUCH:
 TX1 = Getpad(2)
 TY1 = Getpad(2)
 Circlefill TX1,TY1,10
 Pulsout 18,300
 Return

 217

On Recv1
ON RECV1 GOSUB label

When data is received on RS232 Channel 1, this command ON RECV1 will
automatically let the program jump to the specified label. The processor
will automatically check for receiving data and cause interrupts when this
command is used.

Dim A(5) As Byte
Opencom 1,19200,0, 100, 50
On Recv1 DATARECV_RTN ' Jump to DATARECV_RTN when RS232
Do ' Channel 1 receives any data
Loop ' Infinite Loop

DATARECV_RTN:
 If Blen(1,0) > 4 Then
 A(0) = Get(1,1) ' Read 1 Byte.
 A(1) = Get(1,1) ' Read 1 Byte.
 A(2) = Get(1,1) ' Read 1 Byte.
 A(3) = Get(1,1) ' Read 1 Byte.
 A(4) = Get(1,1) ' Read 1 Byte.
 End If
Return ' End of interrupt routine

IMPORTANT
When RECV interrupt routine is being executed, another RECV
interrupt routine will not be allowed to be executed. After it
finishes current interrupt routine execution, the processor will come
right back to another ON RECV1 interrupt routine when there’s still
data being received. (data in receive buffer)

On Timer()
ON TIMER(interval) GOSUB label
 Interval : Interrupt Interval 1=10ms, 2=20ms……65535=655350ms

1 to 65535 can be used

On Timer() can be used to execute a interrupt routine at every specified
interval. Set the desired interval in milliseconds and a label to jump to when
interrupt occurs.

On TIMER(100) Gosub TIMERTN
Dim I As Integer

I = 0

Do
Loop

TIMERTN:
Incr I ' I is incremented 1 every second.
Return

IMPORTANT
Please pay caution when creating the interrupt routine. It
must be less than the interval itself. If interval is set at 10ms,
the interrupt routine, from the label to its return, must be
within 10 ms (About 360 instructions/lines). Otherwise,
collisions can occur within the program.

 218

 219

OPENCOM channel, baudrate, protocol, recvsize, sendsize

The following are allowed baudrate settings for CUBLOC RS232:

Bit2 Bit0

Opencom
 channel : RS232 Channel (0~3)
 Baudrate : Baudrate (Do not use variable)
 protocol : Protocol (Do not use variable)
 recvsize : Receive Buffer Size (Max. 1024, Do not use variable)
 sendsize : Send Buffer Size (Max. 1024, Do not use variable)

To use RS232 communication, this command Opencom must be declared
beforehand.

CUBLOC has 2 channels for RS232C communication. Channel 0 is used for
Monitor/Download but the user can use it for RS232 communication, if
she/he wishes to forego monitoring. Download will still work fine
regardless.

2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800,
115200, 230400

For the protocol parameter, please refer to the table below:

Bit7 Bit6 Bit5 Bit4 Bit3 Bit1
 Parity Stop Bit Bit # of Bits
 0 0 = NONE 0=1 Stop

Bit
0 0 = 5 bit

 0 1 = Reserve* 1=2 Stop
Bits

0 1 = 6 bit

 1 0 = Even 1 0 = 7 bit
 1 1 = Odd 1 1 = 8 bit

The below table shows typical settings based on the previous table:

Value to Use

Bits Parity Stop Bit
8 NONE 1 3
8 EVEN 1 19 (Hex = 13)
8 ODD 1 27 (Hex = 1B)
7 NONE 1 2
7 EVEN 1 18 (Hex = 12)
7 ODD 1 26 (Hex = 1A)

 OPENCOM 1, 19200, 3, 30, 20 ‘Set to 8-N-1

The user can set the send and receive buffer size. The send and receiver
buffers take up space in the data memory. Although you can set each
buffer up to 1024 bytes, it will take up that much of the data memory. The
number of variables you use may decrease. We recommend receive buffer
size from 30 to 100 and send buffer size from 30 to 50.

For CB220 module, port 1 and 2 can be used for Channel 0.

 220

Port 10 and 11 can be used for RS232C Channel 1.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

TX

TX

RX

RX

CHANNEL 1

CHANNEL 0

Please make sure to use only one of them at one time.

For the CB280 module, there are dedicated RS232 ports. For Channel 1,
there are 2 types of outputs, +/- 12V and TTL (+5/0V).

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

+5V

GND

+12V

+12V

-12V

-12V

*Use Set RS232 command to re-set your baudrate and parameter during
execution of your program.

 221

 Port : I/O Port number (0~255)

Out
OUT Port, Value

 Value : Value to be outputted to the I/O Port (1 or 0)

Output 1 or 0 to the specified Port. When you execute this command,
CUBLOC will automatically set the Port to output and output the Value set.
You do not need to use the Output command to set the Port beforehand
when using this command.

OUT 8,1 ‘Output HIGH signal on Port 8.
 ‘(This is same as using command High 8)
OUT 8,0 ‘Output LOW signal on Port 8.
 ‘(This is same as using Low 8)

 222

Output
OUTPUT Port
 Port : I/O Port number (0~255)

Set the Port to output state. All I/O Ports of CUBLOC module are set to
HIGH-Z input as default at power ON.

OUTPUT 8 ‘Set Port 8 to output state.

You can also use HIGH, LOW command to set to output state. When using
Output command, HIGH or LOW state is not clearly defined. We
recommend the use of HIGH or LOW command to set to output mode.

LOW 8 ‘Set Port 8 to output mode and output LOW signal.

 223

Outstat()
Variable = OUTSTAT(Port)
 Variable : Variable to store results. (No String or Single)
 Port : I/O Port Number (0~255)

Read the current outputted value for the specified Port. This command is
different from IN() command in that it reads the status of output, not input.

DIM A AS BYTE
A = OUTSTAT(0) ‘Read from Port 0 and store the current status in

A.

Pause
PAUSE value

Exact same function as DELAY

 224

 Address : RAM Address.

 Value : Variable to store results (up to Long type value)

Write specified length of data to the RAM Address.

Peek()
Variable = PEEK (Address, Length)
 Variable : Variable to Store Result. (No String or Single)

 length : Length of Bytes to read (1~4)

Read specified length of data from RAM Address.

Poke
POKE Address, Value, Length
 Address : RAM Address

 length : length of bytes to read (1~4)

 Const Device = CB280
 Dim F1 As Single, F2 As Single
 F1 = 3.14
 Eewrite 10,Peek(Memadr(F1),4),4
 Poke Memadr(F2),Eeread(10,4),4

 Debug Float F2,CR

Pulsout

 225

PULSOUT Port, Period

This is a SUB library that outputs a pulse. To create a High pulse, the
output Port must be set to LOW beforehand. To create a Low pulse, the
output Port must be set to HIGH before hand.

PULSOUT 2, 100 ‘23mS HIGH Pulse

 Port : Output Port (0~255)
 Period : Pulse Period (1~65535)

If you set the Pulse Period to 10, you will create a pulse of about 2.6mS.
Likewise, a Pulse Period of 100 will give you about 23mS pulse.

LOW 2 HIGH 2

PULSOUT 2, 100 ‘23mS LOW

Pulse

Pulsout is pre-made system’s sub program.

sub pulsout(pt as byte, ln as word)
 dim dl1 as integer
 reverse pt
 for dl1=0 to ln
 next
 reverse pt
end sub

Put
PUT channel, data, bytelength

 226

 channel : RS232 Channel (0~3)

This command sends data through the specified RS232 port. For Data,
variables and constants can be used. To send String, please use Putstr
command instead.

 Data : Data to send (up to Long type value)
 Bytelength : Length of Data (1~3)

IMPORTANT
The command
OPENCOM must be
used beforehand

OPENCOM 1,19200,0,50,10

DIM A AS BYTE

A = &HA0

PUT 1,A,1 ‘ Send &HA0 (0xA0)

 ‘ to RS232 Channel 1.

Within CUBLOC, the data is first stored in the send buffer. CUBLOC BASIC
Interpreter will automatically keep sending the data in send buffer until it’s
empty.

If the send buffer is full when PUT command is executed, the PUT command
will not wait for the buffer to flush. In other words, the data to send will be
thrown away. The command BFREE can be used to check the send buffer
beforehand for such cases.

IF BFREE(1,1) > 2 THEN ‘ If send buffer has at least 2 bytes free
 PUT 1,A,2
END IF

BFREE() checks for how much space the buffer currently has.

TIPS
After using PUT or PUTSTR, the function SYS(0) can be used to verify that
the data has been stored in the send buffer.

OPENCOM 1,19200,0,50,10
PUTSTR 1,”COMFILE”
DEBUG DEC SYS(0) ‘ If output is 7, all data has been stored
 ‘ in the send buffer

*Please refer to On Recv interrupt routine for receiving data using the
hardware serial buffer.

 227

Putstr
PUTSTR channel, data…
 channel : RS232 Channel. (0~3)
 Data : String Data (String variable or String constant)

Send String data to RS232 Channel.

OPENCOM 1,19200,0,50,10
PUTSTR 1,”COMFILE TECHNOLOGY”, DEC I, CR

Similar to Put command, Putstr stores data to be sent in the send buffer.
Afterwards, the CUBLOC BASIC Interpreter takes care of the actual sending.
Please also be careful to not overload the send buffer when it’s full, so you
do not lose any data that needs be sent.

Puta
PUTA channel, ArrayName, bytelength
 channel : RS232 Channel. (0~3)
 ArrayName : Array Name
 Bytelength : Bytes to Send (1~65535)

 228

The command Puta can be used to send a Byte Array.
Simply put name of the array and number of bytes to send.
The array data will be sent starting from the first element of the array.

Dim A(10) As Byte
Opencom 1,19200,0,50,10
Puta 1,A,10 ‘ Send 10 Bytes of Array A

*Please refer to On Recv interrupt routine for receiving data using the
hardware serial buffer.

IMPORTANT
If you try to send more bytes than the array has, CUBLOC will send
garbage values.

Pwm
PWM Channel, Duty, Period
 Channel : PWM Channel Number (0~15)
 Duty : Duty Value, must be less than the Width.
 Period : Maximum of 65535

Use PWM to Output desired PWM frequency. When using this command,
please be aware that PWM Channel Number is different from I/O port
number. For CB280, Ports 5, 6, and 7 are used for PWM 0, 1, and 2,
respectively. Before using PWM, please make sure to set the Ports used to
OUTPUT mode.

According to the set value of Period, a maximum of 16-bit precision PWM
signal is created.
When Period is set to 1024, it will be a 10 bit PWM.
When Period is set to 65535, it will be a 16 bit PWM. Please set the Duty to
be less than the Period. Duty can be 50% of Period to create a square wave.

PWM is independently hardware driven within CUBLOC. Once the PWM
command is executed, it will keep running until PWMOFF command is called.

200

1024

LOW 5 ‘ Set port 5 output and output LOW signal.
PWM 0,200,1024 ‘ Output 10-bit PWM with duty of 200 and
 ‘ Width of 1024

IMPORTANT
PWM 0, 1, and 2 must used the same value of Period since they
share the same resources. Their duty values can be different.

PWM Channel 3, 4, and 5 also must use the same value of Width
since they share the same resources. Their duty values can be
different.
 229

Pwmoff
PWMOFF Channel
 Channel : PWM Channel. (0~15)

Stop the PWM output.

Following is available PWM channels according to the models:

 230

SOUT

SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8PWM2

PWM1
PWM0

For CB220, 3 PWM channels are provided on the Ports P5, P6, and P7.

SOUT
SIN

ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

PWM2

PWM5
PWM1

PWM4
PWM0

PWM3

Please refer to the table below for PWM Channels and corresponding I/O
ports..

PWM Channel CB220 CB280 CB290
PWM0 I/O 5 I/O 5 I/O 5
PWM1 I/O 6 I/O 6 I/O 6
PWM2 I/O 7 I/O 7 I/O 7
PWM3 I/O 19 I/O 89
PWM4 I/O 20 I/O 90
PWM5 I/O 21 I/O 91

 231

Clear CUBLOC BASIC’s RAM. BASIC’s data memory can hold garbage
values at power on. Ramclear can be used as a type of garbage collector
to clear the ram.

Ramclear
RAMCLEAR

*There are CUBLOC modules that support battery backup of the RAM. If
you don’t use Ramclear command in these modules, CUBLOC will remember
previous values of RAM before powering off.

 232

Reverse
REVERSE Port
 Port : I/O Port Number. (0~255)

Reverse the specified Port output. High to Low or Low to High.

OUTPUT 8 ‘Set Port 8 to output.
LOW 8 ‘Set output to LOW.
REVERSE 8 ‘Reverse LOW to HIGH.

 233

Rnd()
Variable = RND(0)

The command Rnd() creates random numbers. A random number between
0 and 65535 is created and stored in the specified variable. The number
inside Rnd() has no meaning.

DIM A AS INTEGER
A = RND(0)

Internally within CUBLOC, this function is Pseudo Random, it creates a
random number based on the previous values. When powered off and
turned back on again, the same pattern of random values are generated.
Thus, this function is not a true random number generator.

 234

 Select...Case
Select..Case
If the condition Value of Case is met, the Statement under the case is
executed.

Select Case Variable

 [Case Value [,Value],…

 [Statement 1]]

 [Case Value [,Value],…

 [Statement 2]]

 [Case Else

 [Statement 3]]

End Select

Select Case A
 Case 1
 B = 0
 Case 2
 B = 2
 Case 3,4,5,6 ‘ Use Comma(,) for more than 1 value.
 B = 3
 Case Is < 1 ‘ Use < for logical operations.
 B = 3
 Case
 B = 4

Else ‘ Use ELSE for all other cases.

 R = 0

End Select

Select Case K
 Case Is < 10 ‘ If less than 10

 Case Is < 40 ‘ If less than 40
 R = 1
 Case Is < 80
 R = 2
 Case Is < 100
 R = 3
 Case Else
 R = 4
End select

Set Debug
SET DEBUG On[/Off]

 235

 High 0

Set Debug is set to On by default.

You can use this command to turn OFF and turn ON the DEBUG window in
BASIC.
When you don’t need DEBUG feature, you can use this command to turn off
DEBUG feature instead of erasing all the code with Debug code. When this
command is used, all DEBUG commands are not compiled, in effect, they
are simply discarded from the program.

Debug Command How-to

When used correctly, the Debug command can help the user identify and fix
bugs in the program. The user can check the value of variables during
execution of a program, simulate an LCD, and also do other tasks to help
save development time.

1. How to Check if program is being reset

Sometimes you will want to check if your program is being reset. This is
usually due to faulty programming.
Simply put a Debug statement at the beginning of your program, such as
‘Debug “=========Reset=========” ‘ as shown below:

Const Device = CB280

Debug

"==========Reset========="

Do

 Delay 200

 Low 0

 Delay 200

Loop

2. How to check if a particular point of the program is

being executed

 236

Simply insert a Debug command where you would like to tell if that part of
the program is being executed, like shown here:

Const Device = CB280

Do

 High 0

 Delay 200

 Low 0

 Delay 200

Loop

Debug "This Part!"

(The debug statement above will never execute as the program stays in the
Do…Loop and will never get out of it)

3. How to simulate an LCD

You can simulate an LCD using the Debug terminal. Simply use the
Goxy,XX,YY to locate a particular location on the LCD like shown here:

Use the command
Debug CLR to clear
the Debug window.
At any time during
development, you
can disable and also
not include Debug
statement during
Compiling by using
the command, “Set
Debug Off”.

 237

Set I2c
SET I2C DataPort, ClockPort
 DataPort : SDA, Data Send/Receive Port. (0~255)
 ClockPort : SCL, Clock Send/Receive Port. (0~255)

This command sets the I2C DataPort and ClockPort, SDA and SCL for I2C
communication. Once this command is executed, both Ports become to
OUTPUT, HIGH state. Please use Input/Output Port for I2C and use two
4.7K resistors as shown below.

SCL
SDA

Some of the I/O ports only support Input or Output. Please check the Ports
in the data sheet for the model you are using.

 238

 239

 Set Ladder on/off
SET LADDER On[/Off]

Ladder is set to Off by default.
Use this command to turn On Ladder Logic.

The following is an example of such minimal BASIC code for Ladder logic.

Const Device = CB280 'Device Declaration

Usepin 0,In,START 'Port Declaration
Usepin 1,In,RESETKEY
Usepin 2,In,BKEY
Usepin 3,Out,MOTOR

Alias M0=RELAYSTATE 'Aliases
Alias M1=MAINSTATE

Set Ladder On 'Start Ladder

Do
Loop 'BASIC program will run in infinite loop/

 240

Set Modbus
Set Modbus mode, slaveaddress
 mode : 0=ASCII, 1=RTU (Currently, only ASCII supported)
 slaveaddress : Slave Address (1 to 254)

CUBLOC supports MODBUS protocol. MODBUS can connect to RS232
Channel 1. Currently, only ASCII Slave mode is supported internally.
(RTU mode is NOT supported internally).

To enable MODBUS slave mode, please use the Set modbus command. This
command set modbus is to enable the MODBUS slave. It must come after
OPENCOM command and only runs on RS232 Channel 1. Baudrate, bit, and
parity can be set with OPENCOM.

 Opencom 1,115200,3,80,80 ‘ Please set receive buffer
 ‘ of at least 50.
 Set Modbus 0,1 ' ASCII Mode, Slave Address=1

After this command, CUBLOC responds automatically. CUBLOC supports
MODBUS commands 1,2,3,4,5,6,15, and 16.

Command Name Command
01, 02 Bit Read
03, 04 Word Write
05 1 Bit Write
06 1 Word Write
15 Multiple Bit Write
16 Multiple Word Write

Please refer to Chapter 9 for detailed MODBUS description and MOBUS
ASCII and RTU examples.

 Set Pad

 241

SET PAD mode, packet, buffersize

 packet : Packet Size (1~255)

To use the PAD communications, you must use Set Pad command at the
beginning of your program. The PAD communication uses 4 wires. SCK is
used as clock signal, SS as Slave Select, MOSI as Master Out Slave In, and
MISO as Master In Slave Out signals.

 mode : Bit Mode (0~255)

 buffersize : Receive Buffer Size (1~255)

The CUBLOC has a dedicated port for Keypad / Touchpad inputs similar to a
PC’s Keyboard and Mouse ports. This port can be used with the Set Pad
command to create interrupts when input is received on the Keypad,
Touchpad, etc… This port is basically a Slave mode SPI communication.

SS
SCK

MOSI
MISO

SS
SCK
MOSI
MISO

TOUCH PAD
CONTROLLER

TO
U

C
H

PA
D

CUBLOC

I/O ports P0 through P3 can be used for PAD communications.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

SS
SCK

MOSI
MISO

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

SS
SCK

MOSI
MISO

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

Packet is for size of packet that will cause an interrupt.
For example, the touchpad require 4 bytes to be received before an
interrupt is called. Here, the size of the packet is 4.

Buffersize is the total size of the receive buffer. The buffer size must be at
least 1 greater than packet size. (buffersize = packet+1) A larger buffer
will essentially give you more time to process the interrupt routine. The
buffer size is usually set to 5 or 10 times the packet size.

Mode will set the receiving mode of the received data. Please refer to the
below table:

Mode Valu

e
Bit
Pattern

Diagram

LSB First &H20 0010
xxxx

MSB First &H00 0000
xxxx

SCK Low-
Edge
Triggered

&H08 xxxx
1xxx

SCK High-Edge
Triggered

&H00 xxxx
0xxx

Sampling
after SCK

&H04 xxxx
x1xx

Sampling
before SCK

&H00 xxxx
x0xx

"0" "1"

 242

You can add the values of the receiving modes. For example, for MSB first,
High-Edge Triggered SCK and sampling after SCK:

 0x00 + 0x00 + 0x04 = 0x04

 243

Here are some of the common examples:

Sample

Sample

Sample

Sample

MSB Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 LSB

MSB Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 LSB

MSB Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 LSB

MSB Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 LSB

SCK

SCK

SCK

SCK

&H00

&H04

&H08

&H0C

For PAD communications, you can use Comfile’s Keypads or Touch screens.

The Set Pad command will automatically set the ports P0 through P3, the
user doesn’t have to set them.

 244

Set Rs232

 protocol : Protocol (Do not use variable)

Set Rs232 channel, baudrate, protocol
 channel : RS232 Channel (0~3)
 Baudrate : Baudrate (Do not use variable)

You can only use Opencom command once to open a serial port. In order
to change the baudrate and protocol, the Set Rs232 command can be used.

For the protocol parameter, please refer to the table below:

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
 Parity Stop Bit Bit # of Bits
 0 0 = NONE 0=1 Stop

Bit
0 0 = 5 bit

 0 1 = Reserve* 1=2 Stop
Bits

0 1 = 6 bit

 1 0 = Even 1 0 = 7 bit
 1 1 = Odd 1 1 = 8 bit

The below table shows typical settings based on the previous table:

Bits Parity Stop Bit Value to Use
8 NONE 1 3
8 EVEN 1 19 (Hex = 13)
8 ODD 1 27 (Hex = 1B)
7 NONE 1 2
7 EVEN 1 18 (Hex = 12)
7 ODD 1 26 (Hex = 1A)

 Opencom 1, 19200, 3, 30, 20 ‘Open Rs232 channel 1
 Set Rs232 1, 115200, 19 ‘Change Baudrate & Parity

 245

This is a conditional statement you can put right after the ON RECV
command. Since the ON RECV command will cause an interrupt even when
there 1 byte of data received, this command Set Until can be used to set
when the interrupt will be called.

Set Until
SET UNTIL channel, packetlength, untilchar
 channel : RS232 Channel. (0~3)
 packetlength : Length of packet (0~255)
 untilchar : Character to catch

When the specified character is received or length of bytes received has
exceed the set packetlength value, then ON RECV will jump to the specified
interrupt routine. This way, you can control when you want to process
received data.

The packet length is set in case the specified character never arrives.

You MUST use this command with ON RECV command.
The following is an example:

Dim A(5) As Byte
Opencom 1,19200,0, 100, 50
On Recv1 DATARECV_RTN
Set Until 1,99,"S"

As you can see above, the packet size is 99 bytes. In other words, if
character “S” is not received within 99 bytes, interrupt will occur.

SET UNTIL 1,5

The user may also just set the packet size and not set the character as
shown above.

The character may also be written in decimal as shown below:

SET UNTIL 1,100,4

Set Int
SET INTx mode
 x : 0 to 3, External Interrupt Channel
 mode : 0=Falling Edge, 1=Rising Edge, 2=Changing Edge

This command must be used with On Int command in order to receive
external interrupt inputs.
The mode of interrupt input can be set here to either falling edge, rising
edge, or changing edge.

SET INT0 0 ‘ Set external interrupt to be on the Falling Edge.

SOUT

SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

INT0
INT1
INT2
INT3

 246

 247

Set Onglobal
SET ONGLOBAL On[/Off]

At power On, Set Onglobal is ON by default.

This command turns on or off the ability to receive ALL interrupts.
When Onglobal is turned Off and turned On, all interrupt settings set before
turning Off will be in effect.

SET ONGLOBAL OFF ‘ Turn ALL interrupts OFF.

If you don’t use any interrupts, you can turn off all interrupts to increase the
execution speed of CUBLOC.

 248

This command turns On or Off the ability to receive individual external
interrupts using global flags. The names of these flags correspond to the
interrupt number supported by the device. For example ONINT1 is used for
Interrupt 1.

When the ONINTx global is set to ON for a specific interrupt, then an
interrupt can be received using the ON INTx command. If the global is set
to OFF, then the code for ON INTx will not be executed if the corresponding
external interrupt occurs. See also the SET INTx command which controls
external interrupts to fire.

Set Onint
SET ONINTx On[/Off]

At power On, Set Onint is ON by default.

Set ONINT0 On
Set ONINT1 On
Set ONINT1 Off
Set ONINT2 Off
Set ONINT3 On

Set OnLadderint

 249

SET ONLADDERINT On[/Off]

At power On, Set OnLadderint is ON by default.

This command turns On or Off the ability to receive Ladder interrupts using
global flags.

When the OnLadderint is set to On, then an interrupt can be received using
the On Ladderint command. If the global is set to OFF, then the code for
On Ladderint will not be executed if the Ladder interrupt occurs. See also
the On Ladderint command.

 250

Set Onpad
SET ONPAD On[/Off]

At power On, Set Onpad is On by default.

This command turns On or Off the ability to receive Onpad interrupts using
global flags.

When the Onpad is set to on, then an interrupt can be received using the
On Pad command. If the Onpad is set to OFF, then the code for On Pad will
not be executed if the interrupt occurs. See also the Set Pad and On Pad
commands.

 251

SET ONRECV0 On[/Off]
Set Onrecv
SET ONRECV1 On[/Off]

At power On, Set Onrecv is On by default.

This command turns On or Off the ability to receive On RecvX interrupts
using global flags. A On RecvX interrupt occurs after data is received on
the serial port AND stored into the receive buffer.

When the Onrecv is set to On, then an interrupt can be received using the
On RecvX command. If the Onrecv is set to OFF, then the code for On
RecvX will not be executed if the interrupt occurs. See also the On Recv
command.

Set ONRECV1 On
Set ONRECV1 Off

 252

Set Ontimer
SET ONTIMER On[/Off]

At power On, Set Onrecv is On by default.

This command turns On or Off the ability to receive On Timer interrupts
using global flags. An interrupt occurs at every time interval set by the On
Timer() command.

When the Ontimer is set to on, then an interrupt can be received using the
On Timer() command. If the Ontimer is set to OFF, then the code for On
Timer() will not be executed if the interrupt occurs. See also the On Timer()
command.

Shiftin()
Variable = SHIFTIN(clock, data, mode, bitlength)
 Variable : Variable to store results. (No String or Single)
 Clock : Clock Port. (0~255)
 Data : Data Port. (0~255)
 Mode : 0 = LSB First (Least Significant Bit First), After Rising Edge
 1 = MSB First (Most Significant Bit First), After Rising Edge
 2 = LSB First (Least Significant Bit First), After Falling Edge
 3 = MSB First (Most Significant Bit First), After Falling Edge
 4 = LSB First (Least Significant Bit First), Before Rising Edge
 5 = MSB First (Most Significant Bit First), Before Rising Edge
 bitlength : Length of bits (1 to 16)

This command Shiftin() receives shift input. It uses 2 Ports, CLOCK and
DATA to communicate.

 253

SHIFTIN and SHIFTOUT command can be used to communicate with SPI,
MIcrowire, and similar communication protocols. When using EEPROM,
ADC, or DAC that requires SPI communication, this command can be used.

CLK

Before Rising Edge

After Rising
Edge

After Falling Edge

DIM A AS Byte
A = SHIFTIN(3,4,0,8) ‘ Port 3 is Clock, Port 4 is Data,
 ‘ Mode 0, 8 bit received.

CLK

0 1 1 0 0 1 0 0 = 26H

DATA

LSB MSB

Shiftout
SHIFTOUT clock, data, mode, variable, bitlength
 Clock : Clock Port. (0~255)
 Data : Data Port. (0~255)
 Mode : 0 = LSB First (Least Significant Bit First)
 1 = MSB First (Most Significant Bit First)
 2 = MSB First(Most Significant Bit First) , Create ACK (For I2C)
 variable : Variable to store data (up to 65535)
 bitlength : Bit Length (1 to 16)

 254

This command Shiftout sends shift output. There are 3 modes. Mode 2 is
for I2C protocol. In I2C communication, there requires an acknowledgement
(ACK) signal for every 8 bits.

SHIFTOUT 3,4,0,&H55,8 ‘ Port 3 = Clock,
 ‘ Port 4 = Data, Mode = 0, send 0x55
 ‘ bitlength 8 bit,

CLK

1 0 1 0 1 0 1 0 = 55H
DATA

LSB MSB

 255

SYS(5) will return the value of the system timer which increments every
10ms.

Sys()
Variable = SYS(address)
 Variable : Variable to store results. (No String or Single)
 address : Address. (0~255)

Use command Sys() to read the status of RS232 buffers for both Channel 0
and 1.

 Address 0 : Actual bytes of sent data in send buffer after executing commands

PUT or PUTSTR.

 Address 1 : Actual bytes of sent data in receive buffer after executing

commands GET or GETSTR

 Address 5 : Timer value that increments every 10ms

 Address 6 : Data Memory (RAM) Address

You may only read the value, not change it. The Timer will increment up to
65535 and then reset to 0. You can use this system timer for applications
requiring extra timer.

SYS(6) will return the current Data Memory Address. At power ON, the
Data Memory Address is reset to 0. After calling Sub routines or Functions,
the Data Memory Address will increment.

If will also increment when Sub routines or Functions are called within a Sub
routine or a function. Interrupts will also increment the Data Memory
Address. When the Data Memory Address exceeds the total Data Memory
available, it will cause Overflow. By using this function, you can avoid
Overflow. CB280 has maximum of 1948 bytes of Data Memory. Please
make sure to have at least 100 bytes of free Data Memory for safety.

A = Sys(6) 'Store the current Data Memory Address in A

 256

Tadin()
Variable = TADIN(Channel)
 Variable : Variable to store results. (No String or Single)
 Channel : AD Channel Number (Not Port number, 0~15)

This command Tadin() is similar to Adin(). It returns the average of 10
ADIN converted value. When working under noisy environments, using
Tadin() could help in obtaining more precise results.

Tadin() is pre-made system’s functions program

function tadin(num as byte) as integer
 dim ii as integer, ta as long
 ta = 0
 For ii = 0 To 9
 ta = ta + Adin(num)
 Next
 TADIN = TA / 10
End Function

 257

Udelay
UDELAY time
 time : interval (1~65535)

A more specific delay function. Delay will start out at about 70 micro-
seconds. Every unit added will add 14 to 18 micro-seconds.

For example. Udelay 0 would be about 70 micro-seconds. Udelay 1 would
be about 82 to 84 micro-seconds. When Interrupt or LADDER code is being
executed at the same time, this delay function might be affected. During
this delay, BASIC interrupts are enabled and could cause further delay when
using this command.

To not get affected by LADDER or BASIC, we recommend stopping LADDER
and all interrupts before using this command.

Udelay 100 ‘ Delay about 1630 micro-seconds.

 258

Usepin
Usepin I/O, In/Out, AliasName
 I/O : I/O Port Number. (0~255)
 In/Out : “In” or “Out”
 AliasName : Alias for the port (Optional)

This command Usepin is used to set the I/O Port status and alias name for
LADDER program.
Please use this command to set the I/O Ports before using them in LADDER.

Usepin 0,IN,START
Usepin 1,OUT,RELAY
Usepin 2,IN,BKEY
Usepin 3,OUT,MOTOR

 259

UTMAX variable
Utmax
 Variable : Variable for decrement. (No String or Single)

Increment the variable by 1. When maximum is reached, the variable is no
longer incremented. The Maximum here refers to the variable’s maximum
value. In the case with Byte, the maximum would be 255 and in the case
with Integer, the maximum would be 65535.

Utmax A ‘ Increment A by 1

 260

WaitTx
WAITTX channel
 channel : RS232Channel. (0~3)

This command WaitTx will wait until the send buffer is flushed.
This one command accomplishes same functions as shown below:

OPENCOM 1,19200,0, 100, 50
PUTSTR 1,“ILOVEYOU”,CR

DO WHILE BFREE(1,1)<49 ‘ Wait until all data have been sent
LOOP

By using WaitTx, the process of sending data becomes simpler as shown
below:

OPENCOM 1,19200,0, 100, 50
PUTSTR 1,“ILOVEYOU”,CR

WAITTX 1 ‘ Wait until all data have been sent

When this command is waiting, other interrupts may be called. In other
words, this command will not affect other parts of the CUBLOC system.

 261

Chapter 9
CUBLOC
Display
Library

 262

With CUBLOC, you can easily control LCD through Comfile LCD products
such as the GHLCD or CLCD. Drawing lines, circles, boxes and printing
strings can be done with single line of code. Below are some of our LCD
specifications that will aid the user in understanding the basics.

Character LCD : CLCD
CLCD is a blue-screen LCD that can print characters and numbers. A
control board that receives serial data and outputs to the LCD is attached to
the back of the CLCD.

CLCD receives data through the I2C communication protocol.

.

 263

Set Display
SET DISPLAY type, method, baud, buffersize
 type : 0=Rs232LCD, 1=GHLCD GHB3224, 2=CLCD
 Method : Communication Method 0=CuNET, 1=COM1
 baud : Baud rate (CuNET Slave address)
 Buffersize : Send Buffer Size

This command SET DISPLAY can be used to set the settings for display. It
can only be used once. All displays will communicate using method set
here.

Please choose the type of LCD, the method, baud rate, and buffer size.
CLCD will use Method 0.

Method = 1 (RS232 Channel 1)

Use RS232 Channel 1 for display. For the CB220, port 11(TX) is used.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

TX

TX

RX

RX

CHANNEL 1

CHANNEL 0

For the CB280, pin 33 or pin 49 can be used. Pin 49 outputs 12V level
signal and 33 outputs 5V level signal.

SOUT
SIN

ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

PWM5
PWM4

TXTX
RXRX

CHANNEL 1CHANNEL 1CHANNEL 0

PWM3

 264

The possible Baud Rate settings are as follows:

2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800,
115200, 230400.

The recommended buffer size is around 50 to 128. If the send buffer size
too small, data will not be displayed correctly. If the send buffer size is too
big, it will take up that much data memory space.

SET DISPLAY 0,1,19200,50 ‘ Set Baud rate to 19200 and
 ‘ send buffer to 50..

SET DISPLAY command can only be used once at the beginning of the
program.

Method = 0 (Use CuNET)

 265

CuNET is a type of I2C protocol that is part of CUBLOC.
For CB220 , use I/O Port 8 (Clock) and Port 9 (Data).

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

SDA
SCL

CuNET can be used with displays that support it. CuNET does not used
Baud Rate Settings, it uses slave address settings instead.

SET DISPLAY 2,0,1,50 ‘CLCD, Slave address of 1, Send buffer of 50

Since CuNET supports multiple devices per CuNET lines, slave addresses are
required. 1:N communication can be accomplished with 2 lines.

Slave
Address

"01"

Slave
Address

"02"

Slave
Address

"12"

Slave
Address

"34"

Slave
Address

"127"

SCL

SDA

5V
5V

Although multiple devices can be connected to the I2c, for displays, only
ONE device may be attached.

 266

 CLS

Turn Cursor ON. (Default if OFF).

 Y : Y-axis position of LCD

String representation of the variable/constant will be printed.

LOCATE 1,1 ‘ Move to position 1,1

Cls
Initialize the LCD and clear all layers.
(Set a little bit of delay for the LCD to initialize.)

 DELAY 200

Csron

Csroff
Turn Cursor OFF.

Locate
LOCATE x,y
 X : X-axis position of LCD

Set the position of the text layer. After the CLS command, the LCD
defaults to position 0,0.

LOCATE 1,1 ‘ Move cursor to 1,1

PRINT “COMFILE”

Print
PRINT String/Variable
 String : String
 Variable : When using variables/constants,

Print characters on the text layer. To print characters to the graphic layer,
GPRINT command can be used.

PRINT “COMFILE”,DEC I

CLCD Module
On the back of the CLCD, a control board is attached. This control board
receives CuNET signal and prints on the CLCD.

 CUNET RS232 5V RS232

DIP S/W

CLCD can also communicate using RS232. There are two RS232 connector,
one for 3-pin 5V level signals and the other for 4-pin +/- 12V level signals.

CUNET RS232 5V RS232

SD
A

R
X

SC
L

N
/C 5V
_R

X

5V 5V 5VG
N

D

G
N

D

G
N

D

Address

Use the CLCD DIP switch to set the I2C slave address. The 4th DIP switch
is not used.

DIP Switch RS232 Baud rate I2C Slave

1 2 3
ON

 267

0 2400

1 2 3
ON

4800

1

1 2 3
ON

9600

2

1 2 3
ON

19200

3

1 2 3
ON

28800

4

1 2 3
ON

38400

5

1 2 3
ON

57600

6

1 2 3
ON

115200

7

 268

e
nnected, please make sure when one of them is working, other is not.

he following is CLCD command table:

 received data is not a command, the CLCD will display it on the screen.

evel
 38400bps. For TTL 5V level (3-pin), up to 115200bps can be used.

hen you execute this program,
LCD will display increment of numbers.

One of CUNET or RS232 communication can be used. If both ar
co

T

Command Example (hex) te on By
s

Executi
Time

Explanation

ESC ’ C’ 1B 43 2 15mS
s

Clear screen. A 15ms delay
must be given after thi
command.

ESC ‘S’ 1B 53 2 Cursor ON (Default)
ESC ‘s’ 1B 73 2 Cursor OFF
ESC ‘B’ 1B 42 2 Backlight ON (Default)
ESC ‘b’ 1B 62 2 Backlight OFF
ESC ‘H’ 1B 48 2 LOCATE 0,0
ESC ‘L’ X Y 00 uS 1B 4C xx yy 4 1 Change the position of the cursor.
ESC
‘D’ 8byte

4 Code
8bytes

11

mory

1B 4 Character code 8 through 15 is 8
custom characters that the user is
free to create and use. This
command will store the bitmap in
this custom character me
area.
Code : 8-15 Character code

1 01 1 Move to beginning of row 1
2 02 1 Move to beginning of row 2
3 03 1 Move to beginning of row 3
4 04 1 Move to beginning of row 4

If

When connecting RS232, maximum baud rate settings for 12V(4-pin) l
is

The following is an example code when using the CB280 to connect to the
CLCD module through CUNET protocol. W
C

Const Device = Cb280
Set Display 2,0,1,5 ‘ Set the SLAVE ADDRESS to 1 by 0
 ‘ manipulating the DIP switch.
Dim i As In egt er
Delay 100 ' Delay for start up of CLCD
Cls
Delay 200 ' Delay for initializing and clearing CLCD
Csroff

 269

Locate 5,2
Print "Start!!!"
Delay 500
Cls
Delay 100
Do
 Incr i
 Locate 0,0
 Print "COMFILE"
 Locate 1,3
 Print "CUBLOC ",Dec i
 delay 100
Loop

 The slave address of CLCD and SET DISPLAY command should match.

*

GHLCD Graphic LCD :
GHB3224 Series

GHLCD is able to display characters and graphic on 3 different layers.
Unlike our CLCD, the GHLCD supports many different commands for easy
drawing of lines, circles, and boxes. There are also commands such as
copy, cut, paste, and a graphic software CuCanvas for downloading BMP
images to the GHLCD.

The GHB3224 model is a black and white STN type LCD with display area of
320 by 240 pixels. There are 3 layers. The first la er is for text and the
ther 2 layers can be used for graphics.

* GHLCD Library is 100% compatible with CuTOUCH modules.

y
o

Layer1

Layer2

Layer3

 270

The text layer size is 40x15 as you can see in the below grid. Each
character size is 8 by 16.

For graphics, 320 by 240 pixels are provided for the GHLCD series.

0

0

319

239

Please note that graphics or characters will be printed in random places
when trying to print outside the specified range of pixels shown here.
With the graphic layer, you have a complete control over where to display
graphics over the 320 x 240 pixels.

 271

 272

With the text layer, you can display text over the specified text pixels of 40
by 15.

We recommend to draw the background in the graphic layer and to print
characters in the text layer.

GHB3224C supports CuNET.

GHB3224C model support CuNET. When using CUBLOC, please use the
GHB3224C model as you have one more RS232 port free to use for
something else.

GHB3224C CuNET setup settings:

Set Display 1,0,1,50 ‘GHLCD, CUNET, Set Address to 1,
 ‘Send buffer to 50..

*Warning : CUNET Slave address and Display Slave address must match.
Display Slave address can be set with the DIP switch.

 273

Cls
CLS
Initialize the LCD and clear all layers.
(Set a little bit of delay for the LCD to initialize.)

CLS
DELAY 200

Clear
CLEAR layer
Erase the specified layer(s).

CLEAR 1 ‘ Erase (Text) Layer 1.
CLEAR 2 ‘ Erase (Graphic) Layer 2.
CLEAR 0 ‘ Erase all layers. Same as CLS.

Csron
CSRON
Turn Cursor ON. (Default if OFF).

Csroff
CSROFF
Turn Cursor OFF.

Locate
LOCATE x,y
 X : X-axis position of LCD
 Y : Y-axis position of LCD

Set the position of the text layer. After the CLS command, the LCD
defaults to position 0,0.

LOCATE 1,1 ‘ Move cursor to 1,1
PRINT “COMFILE”

Print
PRINT String / Variable
 String : String
 Variable : When using variables/constants,

String representation of the variable/constant will be printed.

Print characters on the text layer. To print characters to the graphic layer,
GPRINT command can be used.

LOCATE 1,1 ‘ Move to position 1,1
PRINT “COMFILE”,DEC I

Layer
LAYER layer1mode, layer2 mode, layer3 mode
 Layer1mode : Set Layer 1 mode (0=off, 1=on, 2=flash)
 Layer2mode : Set Layer 2 mode (0=off, 1=on, 2=flash)
 Layer3mode : Set Layer 3 mode (0=off, 1=on, 2=flash)

Set the mode of the specified layer. The flash mode will flash the layer at
16Hz. Layer 1 and 2 are ON and Layer 3 if OFF when LCD is first turned
ON.

Use this command to hide the process of drawing lines, circles, and etc…
Set the layer OFF when drawing and set the layer ON, when you are
finished drawing everything.

 274

 275

GLayer
GLAYER layernumber
 Layernumber : Set the graphic layer. (0,1,2)

There are 3 layers of GHLCD GHB3224 series. One of the layers may be
used as graphic layer. Graphic commands such as LINE, CIRLCLE, and
BOX can be used for the layer set a the graphic layer. Normally, Layer 1 is
used for text while Layer 2 is used for graphics. Layers 2 and 3 have slight
different characteristics. We recommend Layer 2 for graphics that require
a lot of erasing.

Layer 1 can also be used as graphic layer. In this case, you can even erase
text characters with graphic commands. To set Layer 3 to graphic layer,
use command LAYER to turn Layer 3 ON to use Layer 3.

Overlay
OVERLAY overmode
 overmode : Logical Mode (0=or, 1=and, 2=xor)

This command Overlay determines the logic mode between Layer 1 and
Layer 2.
Layer 1 is text and Layer 2 is graphics.
By using this command, the user can decided what to do when Layer 1 and
Layer 2 are displaying on the same position. The default is XOR, which will
invert when Layer 1 and Layer 2 print to the same positions. To no invert,
you can set this to OR state.

Contrast
CONTRAST value
 value : Contrast Value

Control the contrast of the LCD with CONTRAST command.

Contrast 450

 276

Light
LIGHT value
 value : Back light 0=OFF, 1=ON

Turn back light ON and OFF. Default is ON.

 277

Font
FONT fontsize, efontwidth
 fontsize : 0~8 Font Selection
 efontwidth : 0 = fixed width, 1=variable width

GHB3224 has 4 different size and 2 different width.

Font Type Font
0,1 10 x 16
2,3,4,5 16 x 16
6,7 24 x 24
8 48 x 48

 Const Device = CB290
 Cls
 Delay 100
 Font 0,0
 Glocate 10,10
 GPrint "FONT 0,0 :ABCDEFGHIJKLMN"
 Font 2,0
 Glocate 10,30
 GPrint "FONT 2,0 :ABCDEFGHIJKLMN"
 Font 6,0
 Glocate 10,50
 GPrint "FONT 6,0 :ABCDEFGHIJKLMN"
 Font 8,0
 Glocate 10,72
 GPrint "FONT 8,0 "
 Font 0,1
 Glocate 10,120
 GPrint "FONT 0,1 :ABCDEFGHIJKLMN"
 Font 2,1
 Glocate 10,140
 GPrint "FONT 2,1 :ABCDEFGHIJKLMN"
 Font 6,1
 Glocate 10,160
 GPrint "FONT 6,1 :ABCDEFGHIJ"
 Font 8,1
 Glocate 10,185
 GPrint "FONT 8,1 "

Style
STYLE bold, inverse, underline
 bold : 0=Normal, 2 or 3 =Bold
 inverse : 0=Normal, 1=Inverse
 underline : 0=Normal, 1=Underline

You can use STYLE command to add Bold,
Inverse, or Underline to your fonts. MAX

MAX

MAX

MAX

BOLD

INVERSE

UNDERLINE

 278

Cmode
CMODE value
 value : 0=BOX type, 1=Underline type

Choose the type of cursor to use. Default
is the Underline type.

0 : BOX Type

1 : Under Line Type

Line
LINE x1, y1, x2, y2

Draw a line from x1,y1 to x2,y2.

LINE 10,20,100,120 ‘ Draw line

0

0

319

239

Lineto
LINETO x, y

Draw line from the last point to x,y.

LINETO 200,50

‘ Continue drawing line from the last point

0

0

319

239

Box
BOX x1, y1, x2, y2

Draw a box with diagonal positions of X1,Y1 and
X2,Y2.

BOX 10,20,200,100 ‘ Draw box

0

0

319

239

 279

Boxclear
BOXCLEAR x1, y1, x2, y2

Clear the box with diagonal positions of X1,Y1
and X2,Y2.

BOXCLEAR 10,20,200,100 ‘ Clear box

Boxfill
BOXFILL x1, y1, x2, y2,logic
 logic : 0=OR, 1=AND, 2=XOR

Draw a box with diagonal positions of X1,Y1 and
X2,Y2 and fill according to specified logic.

0 OR will display all overlapped areas.
1 AND will display only the overlapped areas.
2 XOR will display the overlapped areas
inversed.

BOXFILL 10,20,200,100,0 ‘ Draw and fill box

0

0

319

239

Circle
CIRCLE x, y, r

Draw a circle with center of circle at x,y, and r
as radius.

CIRCLE 200,100,50 ‘ Draw circle

0

0

319

239

 280

Circlefill
CIRCLEFILL x, y, r
Draw a circle and fill with center of circle at
x,y, and r as radius.

CIRCLEFILL 200,100,50

‘ Draw and fill circle

0

0

319

239

Ellipse
ELLIPSE x, y, r1, r2
Draw an ellipse with center of circle at x,y, and
r1 as horizontal radius and r2 as vertical radius.

ELLIPSE 200,100,100,50 ‘ Draw ellipse

0

0

319

239

Elfill
ELFILL x, y, r1, r2
Draw an ellipse and fill with center of circle at
x,y, and r1 as horizontal radius and r2 as
vertical radius.

ELFILL 200,100,100,50

‘ Draw and fill ellipse

Glocate
GLOCATE x, y
Locate new position for the graphic layer.

GLOCATE 128,32 ‘ locate new position

Gprint “CuTOUCH”

 281

Gprint
GPRINT string

 282

Print String on the graphic layer. You have
more freedom in the graphic layer as you can
use GLOCATE to specify exact position. Then
you can use this command GPRINT to print a
string at that location.

GPRINT “CUBLOC IS FASTER”,CR

‘ Print String and go to next line(CR)

0

0

319

239

CUBLOC IS FASTER

Dprint
DPRINT string

DPRINT is similar to GPRINT except it will over-write the current graphics.

DPRINT “WE LOVE CUBLOC”,CR ‘ Print String and go to next line

0

0

319

239

WE LOVE CUBLOC

This command will allow a much faster printing speed as it will simply
overwrite the background. When trying to display animations or numbers
that change rapidly such as moving ball or current time, Dprint will allow
smooth transitions.

Dprint can only be used with X-Axis that is multiple of 8.
For example, you can use Glocate 8,2 or Glocate 16,101.

Offset
OFFSET x, y

You can set offset for the printed strings on the graphic layer. The default
value is 0. You can control either the x or the y axis offsets.

 283

0

0

319

239

CUBLOC IS FUN
COMFILE TECHNOLOGY

OFFSET 3,3 ‘ Set x and y offset to 3.

0

0

319

239

C U B L O C I S F U N

C O M F I L E T E C H N O L O G Y

After the command, the strings will automatically adjust to the new offsets.

 284

Pset
PSET x, y

Place a dot on x,y

PSET 200,100 ‘ Place a dot

Color
COLOR value

Set the color of LCD. 1 is black and 0 is white. Default value is 0.

COLOR 0 ‘ Set color to 0.

Linestyle
LINESTYLE value

Set line style using this command. You can make dotted lines by increasing
the value. The default value is 0, a straight line.

LINESTYLE 1 ‘ Use dotted lines

Dotsize
DOTSIZE value, style

Set the dot size. Value is the size of the dot and style can either be 0 for
rectangular or 1 for circular dot.

DOTSIZE 1,1 ‘ Set dot size to 1 and dot type to circle

Paint
PAINT x, y

 285

Fill the enclosed area within position x,y.

PAINT 100,100 ‘ Fill the enclosed area

within 100,100

Arc
ARC x, y, r, start, end

Draw an arc with x and y as the center.
Start and end are the values between 0 and
360 degrees.

ARC 200,60, 100, 10, 20 ‘ Draw an arc

from 10 to 20 degrees.

0

0

319

239

Defchr
DEFCHR code, data
 Code : Custom character code (&hdb30 ~ &hdbff)
 Data : 32byte bitmap data

Create custom characters using this code. A character of size 16 by 16 can
be created and stored in the LCD memory. Then the character can be used
just like any other regular character using the command PRINT or GPRINT,
DPRINT. Total of 207 custom characters can be stored in the memory.
At power off, the characters are not preserved.

 DEFCHR &HDB30,&HAA,&HAA,&HAA,&HAA,&HAA,&HAA,&HAA,&HAA,_

 &HAA,&HAA,&HAA,&H55,&HAA,&HAA,&HAA,&HAA,_

 &HAA,&HAA,&HAA,&HAA,&HAA,&HAA,&HAA,&HAA,_

 &HAA,&HAA,&HAA,&HAA,&HAA,&HAA,&HAA,&HAA

 print CHR(&HDB30)

Bmp
BMP x, y, filenumber, layer
 X, y : x,y position to display BMP
 Filenumber : BMP File number
 Layer : Layer to display BMP

GHB3224has FLASH memory to store BMP files. Use the BMP Downloader
to download BMP files. Once BMP files are stored in the LCD, you can
simply use this command BMP to print to the LCD.

*The GHB3224 has 102,400 bytes of Flash memory space to store BMP files.
You can store about 10 of 320x240 full screen size files.

This command is not available in CuTOUCH.

Graphic Data PUSH, POP Commands

On the GHB3224 series, there is a separate stack for storing graphic data.
You can push and pop current screen or part of the current screen to this
stack. By storing to the stack, you can easily implement a copy, cut, and
paste feature, similar to text editors.
GPUSH and GPOP can be used for precise cutting of the current screen while
HPUSH and HPOP can be used for high speed push and pop.

The stack is a LIFO (Last in First out) that will pop the last data that was
pushed.

There is about 32KB of Stack memory. You can store about 3 to 4 full
screens. Please refer to the picture below for how the stack works:

1 1

11

2

2

22

3

3

3

3

4

4

44

 286

Gpush
GPUSH x1, y1, x2, y2, layer

Push x1,y1 to x2, y2 box to the stack.

GPUSH 10,20,200,100,2

0

0

319

239

Gpop
GPOP x, y, layer, logic
 logic =0 : OR
 logic =1 : AND
 logic =2 : XOR
 logic =3 : Clear screen then pop

Pop from stack and display on the specified layer at position x,y with
specified logic.

GPOP 120,20,2,0

0

0

0

0

319

319

239

239

 287

Gpaste

 288

GPASTE x, y, layer, logic

Paste from stack and display on the specified layer at position x,y with
specified logic.

 logic =0 : OR
 logic =1 : AND
 logic =2 : XOR
 logic =3 : Clear screen then pop

This is exact same command as GPOP except it will not pop from stack.
Therefore, you can use this command if there is further need to use the
current item in stack.

0

0

0

0

319

319

239

239

Hpush
HPUSH x1, y1, x2, y2, layer

HPUSH, HPOP, HPASTE commands are similar to GPUSH, GPOP, and
GPASTE except that the columns can only be multiple of 8 as shown below:
*The 320 pixels have been divided by 8, there are only 40 columns, each 8
pixels wide.

HPUSH 6,20,12,100,2

Hpop

HPOP x, y, layer

Same as GPOP, except x value is 0 to 39.

HPOP 10,20,2,0

Hpaste
Hpaste x, y, layer,

Same as GPASTE except x is between 0 and 39.

 289

GHB3224C DIP Switch Settings

On the back of the GHB3224B, there are DIP switches to set the RS232
baud rate and I2Cslave address. GHB3224 DIP Switch number 4 is not
used.

DIP Switch RS232 Baud Rate I2C Slave
Address

1 2 3
ON

2400

0

1 2 3
ON

4800

1

1 2 3
ON

9600

2

1 2 3
ON

19200

3

1 2 3
ON

28800

4

1 2 3
ON

38400

5

1 2 3
ON

57600

6

1 2 3
ON

115200

7

Please choose one communication method to use at a single time. (Either
CuNET or RS232)

 290

Seven Segment Display :
CSG Series

 291

The seven segment display can be used to display numbers. 8 LEDs are
used for most seven segment displays as shown below.

To incorporate a seven segment display into products, in the past, people
had to create a dynamic display method that is very complicated for the
average user. To simplify the matter, we have developed an easy to use
seven segment display called the CSG module.

As you can see above, the front has 4 digit seven segment display and the
back has two I2C connections. After connecting the CSG to CUBLOC, you
can use the commands in the below table to easily and quickly display
numbers you want.

Command Example Usage Explanation
CSGDEC SlaveAdr, Data CSGDEC 0, I Output decimal value.
CSGHEX SlaveAdr, Data CSGHEX 0,I Output hex as decimal value
CSGNPUT SlaveAdr, Digit,
Data

Control digit places CSGNPUT 0,0,8

CSGXPUT SlaveAdr, Digit,
Data

Control digit places and output data
as binary number

CSGNPUT 0,0,9

Csgdec

 292

Use CSGDEC command to print decimal values to the SGN.

 Const Device = cb280
 Set I2c 9,8 ‘ -- must be used before csgdec command
 b=8
 Do
 Csgdec 0,b ‘ -- csgdec command
 Delay 100
 b = b + 1
 If b=0 Then b=200
 Loop

To use CSG commands,
SET I2C command must be used beforehand.

Slave Address

CSG Dip switch:

DIP Switch

Set the slave address of the CSG module at the back. 0 to 3 can be set. A
total of 4 addresses can be set per I2C line pair.

Slave Address
1 2 3

ON

0

1 2 3
ON

1

1 2 3
ON

2

1 2 3
ON

3

 293

To display more than 4 digits, use 2 CSG modules like shown below and set
different slave addresses for each.

Csgnput
CSGNPUT slaveadr, digit, data

 data : Data (&h30 to &h39, &h41~&h46)

&h31 is print “1”

&h41 is Print “A”

Display the desired number to the specified CSG module. DATA most
upper bit is for setting the DOT of the CSG.

 slaveadr : CSG module Slave Address
 digit : Digit position (0~3)

&h30 is print “0”

:
&h39 is print “9”

&h42 is Print “b”
:
&h46 is Print “F”

You can use &H30~39 and &H41~&H46 only.

Csgxput
CSGXPUT slaveadr, digit, data

 294

 slaveadr : CSG module Slave Address
 digit : Position (0~3)
 data : Data

Set the LED ON at the specified position. When displaying anything other
than numbers, this command can be used to control each position of the
LED itself.

A

B

C

D

E

F
G

H

Bit 7 6 3 1 0 5 4 2
LED H F C B G E D A

To print character ‘L’, positions D, E, and F must be turned ON. Since the
bit value would be 0011 1000, in hex that’s &H38 or 0x38.
CSGXPUT 0, 0, &H38 would be the exact command to use.

 slaveadr : CSG Slave Address

CSGHEX slaveadr, data

Csgdec
CSGDEC slaveadr, data

 data : Data

Print decimal value to the CSG.

Csghex
 slaveadr : CSG Slave Address
 data : Data

Print hexadecimal value to the CSG.

 295

Chapter 10
Interface

 296

How to use PWM as Digital-to-Analog converter

CUBLOC has 6 PWM ports. If you use the simple circuit shown below, you
can make a D/A converter.

CUBLOC PWM Port0~5V
OUTPUT

47uF

10Kohm

CuNET

 297

CuNET is a communication protocol for CUBLOC peripherals such as CLCD,
GHLCD, CSG modules. With just 2 pins, SCL and SDA, you can
communicate with up to 127 devices simultaneously. CuNET uses
CUBLOC’s I2C protocol to communicate.

To use CuNET, please make sure to add pull up resistors(4.7K each) to the
SCL and SDA lines. SCL and SDA pins are in a open-collector style,
protecting against outside noise. It automatically removes pulses less than
50ns.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

5V (RESET)

4.7Kohm x 2

GND

SCL
SDA

1
2

3

4

For using CuNET, the 4 pin connector’s pin 1 must be connected to ground,
pin 2 to 5V or RESET, pin 3 to SCL, and pin 4 to SDA. This 4 pin connector
will be used as standard for CuNET communications.

When using CuNET, the CUBLOC core module will act as the “master” and
the device connected to as the “slave”. All CuNET devices will respond to
CUBLOC while in idle state.

CuNET operates in a Master-Slave mode. Slave cannot start
communication with the master. For this type of communication, you must
use PAD communication. PAD can receive inputs from other devices.
Please refer to ON PAD command for detailed information.

 298

CuNET device’s connector’s pin 2 connects to 5V of the main module:

MAIN

Power

CuNET Module

GND
5V
SCL
SDA

GND
5V
SCL
SDA

CuNET device’s connector’s pin 2 connects to RESET of the main module
when power is supplied to the CUNET device. (Active LOW to RESET
causes CUBLOC to reset)

Power Power

MAIN
CuNET Module

GND
RESET
SCL
SDA

GND
RESET
SCL
SDA

CuNET lines can be used within 3 feet. For longer communications(up to
about 1mile), you can use Phillips I2C Long distance interface chip. (P82B96
or P82B715)

 299

About I2C…

Please make sure to use command SET I2C before using I2C commands.

I2C’s START, STOP

CUBLOC provides easy set of commands to communicate using I2C protocol.
I2C communication is a widely used protocol, mainly used for
communicating with ADC, EEPROM, DAC, External I/O chips.

I2C uses two lines, SDA and SCL, and operates in either MASTER or SLAVE
mode. CUBLOC can only be used as a MASTER.

When SCL(Clock) and SDA(Data) are HIGH, I2C is in idle state. If START
command is executed during idle state, I2C begins.

When SCL and SDA are both LOW, I2C is in busy state. If STOP command
is executed during busy state, I2C stops.

There is also a Repeated Start in I2C. If START command is executed
during busy state, I2C Restarts.

SDA

START STOP Repeated
Start

STOP

SCL

Using EEPROM through I2C

We will go through an example showing I2C communication between
CUBLOC and EEPROM 24LC32. The following is a picture taken from the
EEPROM’s data sheet. It shows how to send data to the EEPROM.

A0

R/W

S : Start
A : Acknowledge
P : Stop

S PA A ACONTROL BYTE HIGH ADDRESS LOW ADDRESS DATA

The first bit is for Start command. The 4 upper bits of CONTROL BYTE
must be 1010 and the 3 lower bits are for selecting the Chip’s address. The
user may change the EEPROM chip’s address by configuring the chip.

For a read, 1 can be written for R/W and for a write, 0 can be written for
R/W. A is for acknowledgement of the 8 bits(1 byte) sent. Then HIGH
ADDRESS, LOW ADDRESS and DATA can be sent. When all data are sent,
Stop command can be sent.

It takes about 5ms of time for EEPROM write.

The following is a write EEPROM sequence in CUBLOC’s BASIC code:

Set I2c 8,9 ' Set P8 as SDA, P9 as SCL
I2cstart
If I2cwrite(&H10100000) = 1 Then ERR_PROC ' Chip Address = 0
If I2cwrite(ADR.BYTE1) = 1 Then ERR_PROC ' ADDRESS WRITE
If I2cwrite(ADR.LOWBYTE) = 1 Then ERR_PROC
If I2cwrite(DATA) = 0 Then ERR_PROC '1 Byte WRITE
I2cstop
Delay 5 ' Wait until WRITE is done

Next, we will look at how to read 1 byte from the EEPROM. Although it
might look more complex than writing 1 byte, we will soon find out that
they are very similar.

 300

 301

A0 1

R/W R/W NoAckRepeated Start

Read Point
S : Start
A : Acknowledge
P : Stop

S SA A A PXCONTROL BYTE CONTROL BYTEHIGH ADDRESS LOW ADDRESS DATA

Read Point is where the actual DATA will be read from the EERPOM. The
front part of the command is for setting the address to read data.

Set I2c 8,9
I2cstart
If I2cwrite(&H10100000) = 1 Then ERR_PROC ' Chip Address = 0
If I2cwrite(ADR.BYTE1) = 1 Then ERR_PROC ' ADDRESS WRITE
If I2cwrite(ADR.LOWBYTE) = 1 Then ERR_PROC
I2cstart ' Repeated Start
If I2cwrite(&H10100001) = 1 Then ERR_PROC ' Read command..
DATA = I2cread(0) ' Result store in DATA.
I2cstop

And now, we will look at how to read multiple data from the EEPROM.
Without using the STOP command, we can keep reading from the EEPROM
since it automatically increments its address.
In this way, we can set the address to read from only once, and then read
the rest of the data much faster.

Set I2c 8,9
I2cstart
If I2cwrite(&H10100000) = 1 Then ERR_PROC ' Chip Address = 0
If I2cwrite(ADR.BYTE1) = 1 Then ERR_PROC ' ADDRESS WRITE
If I2cwrite(ADR.LOWBYTE) = 1 Then ERR_PROC
I2cstart ' Repeated Start
If I2cwrite(&H10100001) = 1 Then ERR_PROC ' Read command..
For I = 0 To 10
 ADATA(I) = I2cread(0) ' Read 10 bytes continuously,
 ' ADATA is an array
Next
I2cstop

I2c example
The following example shows CB280 and EEPROM 24LC32 connected. A
value will be written to a specified address of the EEPROM and then read
back to display on the DEBUG window of CUBLOC Studio.

 Const Device = cb280
 Dim adr As Integer
 Dim data As Byte
 Dim a As Byte
 data = &ha1
 adr = &h3
 Set I2c 3,2
 Do
 ‘ Write 1 Byte
 I2cstart
 If I2cwrite(&b10100000)= 1 Then Goto err_proc
 a=I2cwrite(adr.byte1)
 a=I2cwrite(adr.lowbyte)
 a=I2cwrite(data)
 I2cstop
 Delay 1000
 ‘ Read 1 Byte
 I2cstart
 a=I2cwrite(&b10100000)
 a=I2cwrite(adr.byte1)
 a=I2cwrite(adr.lowbyte)
 I2cstart
 a=I2cwrite(&b10100001)
 a=I2cread(0)
 I2cstop

SCL

CB28024LC32

P2
P3SDA

A0
A1
A2

 ‘ Print Results
 Debug Hex a,cr
 Delay 500
 Loop

err_proc:
 Debug "Error !"
 Do
 Loop

 302

More About I²C… (Advanced)

I²C is a common protocol used by many industrial controllers today.
CUBLOC uses I²C as one of its main communication protocols.

 303

CuNET is built on the I²C protocol. The main advantage of CuNET is that
it’s hardware controlled for LCD displays. (Not CSG modules or I/O ports)

I²C commands such as I2CWRITE and I2CREAD are software commands.
The advantage of I²C commands is that it does not require receive
interrupts like serial communications. This allows the CUBLOC to multi-task,
not letting any situations where the processor can “freeze” indefinitely.

As a result, a CUBLOC CB280 module can interface with almost 24 separate
I2C buses! (That’s buses, you can add multiple I²C device per I²C bus!)

The CUBLOC simulates a Master I²C device. Since it can only simulate a
Master I²C device, the I²C devices connected must be Slave I²C devices.

The main advantage of I²C protocol is that it does not cause any delays as
CUBLOC is the Master I²C devices. CUBLOC can simply request for data
when it wants to, it does not have to wait for the I²C Slave device to
respond.

*Note: The I/O port used for I²C communication must be an Input/Output
port, not Input Only or Output Only.

Slave
Address

"01"

Slave
Address

"02"

Slave
Address

"12"

Slave
Address

"34"

Slave
Address

"127"

SCL

SDA

5V
5V

Even though maximum range for typical I²C bus is around 12 feet, a long
distance extender chip such as the P82B715 can be used to extend the bus

almost up to 3/4 mile. P82B96 can also be used as buffer to protect the
I2C devices in case of electrical surges and interferences.

N/C

LX

SX

GND

VCC

LY

SY

N/C

LX, LY : Buffered Bus, LDA or LCL

SX, SY : I2C Bus, SDA or SCLP82B715

Extend up to about of 3/4 mile using the P82B715.

P82B715CUBLOC P82B715
I2C DEVICE

SDASDA

SCL SCL

LONG CABLE

LDA LDA

LCL LCL

By using the P82B96, ground and power can be isolated on the device ends.

SDA

RX

TX

GND

VCC

SCL

RY

TY

P82B96

P82B96

SDA TX

TY

RX

RY
SCL

P82B96 P82B96

12V12V
5V 5V

LONG CABLE
SDA SDA

SCL SCL

Please refer to Phillips website for more information on the specific chips
discussed here: http://www.standardics.philips.com/.

If you are using I²C interface within 12 feet, we recommend to use the

 304

http://www.standardics.philips.com/

following protection circuit:

If the I²C devices are connected with no buffers, electrical interference can
cause damage to either CUBLOC or the I²C Slave device. By using diodes
as shown below, you can protect against most of the electrical interference.
If the devices are in a heavy, industrial environment, we recommend to use
P82B96 chips as buffers.

A0

A1

A2

GND

VCC

WP

SCL

SDA

SCL

SDA

24LC32 CABLE

CUBLOC

.

 305

 306

MEMO

 307

Chapter 11
MODBUS

 308

ASCII use LRM for error checking and RTU uses CRC.

Field

About MODBUS…
MODBUS is a protocol developed by MODICON to help interface peripherals
for their PLCs.

It is usually used with devices like Touch screens, HMI devices, and SCADA
software. A lot of Touch screen panels, HMI and SCADA software now
days support MODBUS.

In MODBUS, there is Master and Slave mode. The Master provides data
while the Slave receives the data. The slave can only respond to master
and cannot communicate on its own.

Each slave has a unique address called Slave Address. The Master, using
those Slave Addresses, can talk to one of the slaves at a time.

For 1 to 1 connections, RS232 can be used. For 1 to N connections, RS485
can be used.
The master sends messages in units of “Frames”. Each Frame contains the
Slave address, command, Data, Error Checksum codes. Slave receives a
Frame and analyzes it. When responding to the Master, Slave also sends in
“Frames”.

In other words, MODBUS send and receive can be seen as composed of
Frames that are sent and received.

There are two types of MODBUS, ASCII and RTU. RTU type can be
implemented by using less bytes in the communication.

The next is how ASCII and RTU are used:

Hex ASCII RTU
Header : (colon) None
Slave Address 0X03 0 3 0X03
Command 0X01 0 1 0X01
Start Address HI 0X00 0 0 0X00
Start Address LO 0X13 1 3 0X13
Length HI 0X00 0 0 0X00
Length LO 2 5 0X25 0X25
Error Check LRC (2 Bytes) CRC(2 Bytes)
Ending Code CR LF None
Total Bytes 17 Bytes 8 Bytes

 309

SLAVE ADR LRC

ASCII type uses a colon (:) to start and ends with CR or LF.

START FUNCTION DATA END
: (COLON) 2 Bytes 2 Bytes n Bytes 2 Bytes CR,LF

RTU requires no special characters to start and finish. It uses 4 bytes of
blank space to indicate start and finish.

START SLAVE ADR FUNCTION DATA CRC END
T1-T2-T3-T4 1 Byte 1 Byte N Bytes 2 Byte T1-T2-T3-T4

CUBLOC supports MODBUS command & Address

Command

CUBLOC supports MODBUS commands 1,2,3,4,5,6,15, and 16.

Command Name
01, 02 Bit Read
03, 04 Word Write
05 1 Bit Write
06 1 Word Write
15 Multiple Bit Write
16 Multiple Word Write

In MODBUS, there are addresses which stand for Registers in CUBLOC.
CUBLOC’s Registers P, M, F, C, T, and D can be accessed using the following
table:

Bit Units Word Units
Address Register Address Register
0000H P
1000H M
2000H Not Used
3000H Not Used
4000H F
 5000H T
 6000H C
 7000H D
 8000H WP
 9000H WM
 0A000H WF

 310

This function code can read the bit status of PLC’s Register. The following
is an example of reading Registers P20 through P56 from Slave Address of
3.

Query:
 Hex

Function Code 01: Read Coil Status
Function code 02 : Read Input Status

Field ASCII Bytes
Header : (colon) 1
Slave Address 0X03 0 3 2
Function Code 0X01 0 1 2
Start Address HI 0X00 0 0 2
Start Address LO 0X14 1 4 2
Length HI 0X00 0 0 2
Length LO 0X25 2 5 2
Error Check LRC 2
Ending Code CR LF 2

LRC is the 2’s complement of 8-bit sum of all values except Colon, CR, and
LF.

Then we can invert the bits.

ASCI

I

4

For the table above, 0x03 + 0x01 + 0x13 + 0x25 = 0x3C.
To fin d the 2’s complement of 0x3C, we can write it in binary first.
0011 1100

 1100 0011

Then add one which is:
 1100 0100 = 0xC4

LRC = 0xC4

: 0 3 0 1 0 0 1 3 0 0 2 5 C C

R

LF

Hex 3A 3

0

3

1

3

3

3

3

3

0

3

0

3

0

3

1

3

0

3

0

3

2

3

5

4

3

3

4

13 1

0

 311

Hex

Response to the query above is ..

Response:
Field ASCII Bytes
Header : (colon) 1
Slave Address 0X03 0 3 2
Function Code 0X01 0 1 2
Byte Count 0X05 0 5 2
Data 1 0X53 5 3 2
Data 2 0X6B 6 B 2
Data 3 0X01 0 1 2
Data 4 0XF4 F 4 2
Data 5 0X1B 1 B 2
Error Check LRC 2
Ending Code CR LF 2

Likewise we can acquire all of P20 through P56 and the left over bits can
just be disregarded.

If you look at the response to the query, you can see that bit 20 through 27
makes one byte.

P20 is placed as LSB of Data 1 and P27 is placed as MSB of Data 1.

 312

Query:

Function Code 03: Read Holding Registers
Function Code 04: Read Input Registers

This function code can read 1 Word (16 bits), usually used for Counters,
Timers, and Data Registers. The following shows an example that reads
Slave Address 3’s D Register 0 to 2.

Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 0 3 2
Function Code 0X03 0 3 2
Start Address HI 0X70 7 0 2
Start Address LO 0X00 2 0 0
Length HI 0X00 0 0 2
Length LO 0X03 0 3 2
Error Check 2 LRC
Ending Code CR LF 2

Response:
ex Bytes

1 Word is has 2 bytes, so we are going to get 6 bytes total as response.

 Field H ASCII
Header : (colon) 1
Slave Address 0X03 0 3 2
Function Code 0X03 0 3 2
Byte Count 0X06 0 6 2
Data 1 LO 0X03 0 3 2
Data 1 HI 0XE8 E 8 2
Data 2 LO 0X01 0 1 2
Data 2 HI 0XF4 F 4 2
Data 3 LO 0X05 0 5 2
Data 3 HI 0X33 3 3 2
Length LO 0X03 0 3 2
Error Check LRC 2
Ending Code CR LF 2

 313

Field Hex

Function Code 05 : Force Single Coil

PLC’s can remotely control the status of its Registers in units of bits through
this function code. The following is an example showing Slave Address 3’s
P1 Register being turned ON.
To turn ON Registers, FF 00 is sent and to turn OFF Registers, 00 00 is sent.

Query:

ASCII Bytes
Header : (colon) 1
Slave Address 0X03 0 3 2
Function Code 0X05 0 5 2
Start Address HI 0X01 0 1 2
Start Address LO 0X00 0 0 2
Length HI 0XFF F F 2
Length LO 0X00 0 0 2
Error Check LRC 2
Ending Code CR LF 2

The response shows that the data was entered correctly.
You MUST use FF 00 and 00 00 to turn ON/OFF Registers, other values will
simply be ignored.

Response:
Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 0 3 2
Function Code 0X05 0 5 2
Start Address HI 0X01 0 1 2
Start Address LO 0X00 0 0 2
Length HI 0XFF F F 2
Length LO 0X00 0 0 2
Error Check LRC 2
Ending Code CR LF 2

 314

Function Code 06 : Preset Single Registers

ASCII

PLC’s can remotely control the status of its Registers in units of Words
through this function code.
The following is an example showing Slave Address 3’s D1 being written.

Query:
Field Hex Bytes
Header : (colon) 1
Slave Address 0X03 0 3 2
Function Code 0X06 0 6 2
Start Address HI 0X70 0 1 2
Start Address LO 0X01 7 0 2
Length HI 0X12 1 2 2
Length LO 0X34 3 4 2
Error Check LRC 2
Ending Code CR LF 2

Response:
Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 0 3 2
Function Code 0X06 0 6 2
Start Address HI 0X70 0 1 2
Start Address LO 0X01 7 0 2
Length HI 0X12 1 2 2
Length LO 0X34 3 4 2
Error Check LRC 2
Ending Code CR LF 2

 315

Function Code 15: Force Multiple Coils

PLC’s can remotely control the status of its Registers in units of multiple bits
through this function code. The following is an example showing Slave
Address 3’s P20 through P30 being turned ON/OFF.

Query:
Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 0 3 2
Function Code 0X0F 0 F 2
Start Address HI 0X00 0 0 2
Start Address LO 0X14 1 4 2
Length HI 0X00 0 0 2
Length LO 0X0B 0 B 2
Byte Count 0X02 0 2 2
Data 1 0XD1 D 1 2
Data 2 0X05 0 5 2
Error Check LRC 2
Ending Code CR LF 2

Below table shows how the DATA in the above query is divided. P27 is
placed in the MSB of the first Byte send and P20 is placed in the LSB of the
first Byte. There will be total of 2 bytes sent in this manner. Left over bits
can be set to zero.

Bit 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1

Registe

r

P27 P26 P25 P24 P23 P22 P21 P20 P30 P29 P28

Response:
Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 0 3 2
Function Code 0X0F 0 F 2
Start Address HI 0X00 2 0 0
Start Address LO 0X14 1 4 2
Length HI 0X00 0 0 2
Length LO 0X0B 0 B 2
Error Check LRC 2
Ending Code CR LF 2

 316

PLC’s can remotely control the status of its Registers in units of Multiple
Words at a time through this function code. The following is an example
showing Slave Address 3’s D0 through D2 being written.

Hex

Function Code 16 : Preset Multiple Registers

Query:
Field ASCII Bytes
Header : (colon) 1
Slave Address 0X03 0 3 2
Function Code 0X10 1 0 2
Start Address HI 0X70 7 0 2
Start Address LO 0X00 2 0 0
Length HI 0X00 0 0 2
Length LO 0X03 0 3 2
Byte Count 0X06 2 0 6
Data 1 HI 0XD1 2 D 1
Data 1 LO 0X03 0 3 2
Data 2 HI 0X0A 0 A 2
Data 2 LO 0X12 1 2 2
Data 3 HI 0X04 0 4 2
Data 3 LO 0X05 0 5 2
Error Check LRC 2
Ending Code CR LF 2

Response:
Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 0 3 2
Function Code 0X10 1 0 2
Start Address HI 0X70 7 0 2
Start Address LO 0X00 0 0 2
Length HI 0X00 0 0 2
Length LO 0X03 0 3 2
Error Check LRC 2
Ending Code CR LF 2

 317

Error Check
If there is error in the data from the Master, Slave will send back an error
code.

Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 0 3 2
Function Code 0X81 8 1 2
Error Code 0X09 0 9 2
Error Check LRC 2
Ending Code CR LF 2

There are the following types of error codes:

Code Error Name Explanation
01 ILLEGAL FUNCTION When a non-supported function code is

received.
02 ILLEGAL DATA ADDRESS When an incorrect address is received.
03 ILLEGAL DATA VALUE When bad data is received.
09 LRC UNMATCH When LRC is incorrect.

 318

MODBUS ASCII Master Mode
There are no special commands to set CUBLOC to Master Mode for MODBUS
communication. Master Mode simply needs to be able to use RS232 data
communication using commands like CUBLOC’s GET and PUT.

The following is an example of ASCII Master Mode implemented in CUBLOC
BASIC:

'Master Source

Const Device = cb280
 Dim RDATA As String * 80
 Dim a As Byte, ct As Byte
 Dim b As String * 17
 Dim Port As Integer

 Opencom 1,115200,3,80,80
 On Recv1 Gosub GETMODBUS ' Data Receive Interrupt routine
 Set Until 1,60,10 ' When Ending Code (10)
 ' on Channel 1 is discovered,
 ' create an interrupt
 Do
 For Port=2 To 4
 BitWrite Port, 1 'Turn P0,P1,P2 ON!
 Delay 100
 Next
 For Port=2 To 4
 BitWrite Port, 0 'Turn P0,P1,P2 OFF!
 Delay 100
 Next

 Loop

GETMODBUS:
 If Blen(1,0) > 0 Then ' If buffer empty then
 A=Blen(1,0) ' Store the buffer length in A!
 Debug "GOT RESPONSE: "
 B=Getstr(1,A) ' Store received data in B
 Debug B
 End If
 Return

End
 Sub BitWrite(K As Integer, D As Integer)
 Dim LRC As Integer
 Putstr 1,":0305"
 Putstr 1,Hp(k,4,1)

 319

 If D=0 Then
 Putstr 1,"0000"
 LRC = -(3+5+K.Byte1+K.Byte0) 'Calculate LRC
 Else
 Putstr 1,"00FF"
 LRC = -(3+5+K.Byte1+K.Byte0+0xFF) ' LRC
 End If
 Putstr 1,Hex2(LRC),13,10 'Send

 End Sub

MODBUS ASCII Slave Mode
 ‘ Slave Source
 Const Device = cb280
 Opencom 1,115200,3,80,80
 set modbus 0,3
 Usepin 2, Out
 Usepin 3, Out
 Usepin 4, Out
 Set Ladder On

Master Slave

CB280 CB280

RX

TX

TX

RX

GND GND

RS232
CH1

RS232
CH1

P2

P3

P4

When the Slave finishes processing the Data sent by the Master, the Slave
will jump to the label GETMODBUS. We can use SET UNTIL command to
check for ending code LF (10).

The data in RDATA can be analyzed to verify if the communication was
achieved soundly or not.

Then Getstr command is used to store all received data in RDATA.

When the slave is not connected, the program will never jump to
GETMODBUS.

 320

MODBUS RTU Master Mode

The following is an example of RTU Master Mode implemented in CUBLOC
BASIC to write 32-bit floating point values (2 Word Registers) to an RTU
slave device 1:

Const Device = CB280

#include "crctable.inc"

'______________Open serial port for MODBUS__________________________

'_________[Set Baudrate as 115200bps and 8-N-1 with]________________

'_________[receive buffer of 200 bytes and send buffer of 100 bytes]

Opencom 1,115200,3,200,100

'_________[Data Receive Interrupt routine]__________________________

On Recv1 Gosub GETMODBUS

'______________[Clear All Buffers]__________________________________

Bclr 1,2

'______________[User Timer for MODBUS Timeout]______________________

On timer(1) Gosub MyClock

Debug "__________[MODBUS FloatingPoint Value Write RTU Example]_____",Cr

'Test writing 32bit SINGLE to Register Address 0 of device 1

Debug "writing 3.14 and 6.99 Long value to register 0",Cr

writesingle 1,0,3.14

writesingle 1,0,6.99

'Example showing how to send multiple floating point variables

'by making a simple function as WriteMultipleSingle()

SDataArray(0)=1.11

SDataArray(1)=2.22

SDataArray(2)=3.33

Debug "Writing multiple Single values to address 0",Cr

writemultiplesingle 1,0,3

'---

Do

Loop

'Modbus Receive routine

#include "ModbusRTUrecv.bas"

End

'Modbus Low-Level include file

#include "ModbusRTULib016.bas"

*Please check our Forum on the internet, www.cubloc.com for more Modbus
ASCII and RTU examples and MODBUS BASIC include file downloads.
** Please Check APPENDIX H for MODBUS include file source

http://www.cubloc.com/

 321

MODBUS RTU Slave Mode
The following is an example of RTU Slave Mode implemented in CUBLOC
BASIC to respond to ForceSingleCoil(05) and ForceMultipleCoil(15) as an
RTU slave device 1:

' ===
' File Description: Modbus RTU Slave Mode Library v.0.0.5
' Purpose: Modbus RTU Slave Protocol
' Author: Max @ Comfile Technology Inc.
' E-mail: max@comfiletech.com
' Updated: 6/1/2006

Const Device = CB290

Usepin 0,Out
Usepin 1,Out
Usepin 2,Out
Usepin 3,Out
Usepin 4,Out
Usepin 5,Out
Usepin 6,Out
Usepin 7,Out
Usepin 8,Out
Usepin 9,Out
Usepin 10,Out
Usepin 11,Out
Usepin 12,Out
Usepin 13,Out
Usepin 14,Out
Usepin 15,Out

Set Ladder On
' ____[Program Description]__

' ____[Pre-compile Definitions]__

#define Channel 1 ' Set Channel to use for MODBUS
#define DEBUGMODE 1
#define DEVICE_ID 1
' ____[Variables]__

Dim Clock As Integer ' Clock variable for timeout function
Dim SavedTime As Integer ' Clock variable to save time
Dim rmsg(200) As Byte ' Byte Array to store received data
Dim ReceivedBytes As Integer ' Integer to keep track of # of bytes received

'Initialize variables
Clock=0
SavedTime=0
ReceivedBytes=0
' ____[Open Port using Opencom command]__________________________________

'Set Baudrate as 115200bps and 8-N-1 with
'receive buffer of 200 bytes and send buffer of 100 bytes
#If Channel = 0
 Opencom 0,115200,3,200,100
 Debug "Serial Port Channel set to 0 ", Cr
#Elseif Channel=1
 Opencom 1,115200,3,200,100
 Debug "Serial Port Channel set to 1 ", Cr
#Endif

' ____[Set Receive Interrupt for the Port using On Recv command]_________

#If Channel = 0

 322

 On Recv0 Gosub GETMODBUS ' Jump to GETMODBUS when data received
#Elseif Channel=1
 On Recv1 Gosub GETMODBUS ' Jump to GETMODBUS when data received
#Endif

' ____[Set Timer Interrupt]___

On timer(1) Gosub MyClock ' Jump to MyClock every 10ms

Bclr Channel,2 ' Clear all
buffers

Debug "**********************MODBUS RTU Slave Example",Cr
#include "crctable2.inc"

'---

Do

Loop

MyClock:
 Incr Clock

Return

'DataArrival for Com1$$
'Store into rmsg array when datareceived
GETMODBUS:
 ProcessReceivedData
Return
'$$
End

' ____[Sub-Functions]__

Sub ProcessReceivedData()
 Dim NumOfBytes As Integer ' Number of bytes received
 Dim ct As Byte ' Variable for for...next
loop
 Dim ElapsedTime As Integer

 ElapsedTime=Clock-SavedTime
 If ElapsedTime>0 Then
 Debug " *** ElapsedTime: ", Dec ElapsedTime, " Bytes Received: ", Dec
ReceivedBytes,Cr
 If CRCCheck(ReceivedBytes-1)=1 And rmsg(0) = DEVICE_ID Then
 ProcessFunctionCode
 End If
 ReceivedBytes=0
 End If

 If Blen(Channel,0) > 0 Then ' If buffer larger than zero then
 NumOfBytes=Blen(Channel,0) ' Store the buffer
length in A!'

 For ct=0 To NumOfBytes-1
 rmsg(ReceivedBytes)=Get(Channel,1) ' Store received
data in B

#ifdef DEBUGMODE
 Debug Hp(rmsg(ReceivedBytes),2,1)
#Endif
 Incr ReceivedBytes
 Next
 End If

 SavedTime=Clock

 323

End Sub

Sub ProcessFunctionCode()
 If ((rmsg(1) > 0) And (rmsg(1) <7)) Or rmsg(1)=15 Or rmsg(1)=16 Then
 Debug "Function Code ", Dec rmsg(1), Cr
 Select Case rmsg(1)
 Case 5
 ProcessForceSingleCoil
 Case 15
 ProcessForceMultipleCoils

 End Select
 End If
End Sub

Sub ProcessForceSingleCoil()
 Dim Addr As Integer
 Addr=(rmsg(2) *256) + rmsg(3)
#ifdef DEBUGMODE
 Debug "Coil: ", Dec Addr,Cr
#Endif
 If rmsg(4)=0xff And rmsg(5)=0 Then
 _P(Addr)=1
 Elseif rmsg(4)=0x00 And rmsg(5)=0x00 Then
 _P(Addr)=0
 End If
 GetCRC 5
 Puta Channel,rmsg,8
End Sub

Sub ProcessForceMultipleCoils()
 Dim Addr As Integer
 Addr=(rmsg(2) *256) + rmsg(3)
#ifdef DEBUGMODE
 Debug "StartingAddress: ", Dec Addr,Cr
#Endif
 ProcessLengthByteData Addr
End Sub

Sub ProcessLengthByteData(pAddr As Integer)
 Dim Length As Integer
 Dim tLength As Integer
 Dim ByteCount As Byte
 Dim ct As Byte,ct2 As Byte
 Dim tAddr As Integer
 Length=(rmsg(4)*256) +rmsg(5)
 ByteCount=rmsg(6)
#ifdef DEBUGMODE
 Debug "Length: ", Dec Length,Cr
 Debug "ByteCount: ", Dec ByteCount,Cr
#Endif

 For ct=0 To ByteCount-1
 If Length mod 8 <> 0 Then
 tLength= Length mod 8
 Else
 tLength=8
 End If

 For ct2=0 To tLength-1
 tAddr=(ct*8)+Paddr+ct2
 _P(tAddr)=((rmsg(7+ct)>>ct2) And 1
#ifdef DEBUGMODE
 Debug "P",Dec ((ct*8)+pAddr+ct2)," ", Dec ((rmsg(7+ct)>>ct2)
And 1),Cr
#Endif
 Next
#ifdef DEBUGMODE
 Debug "Data ", Dec ct, " ",Hex rmsg(7+ct), Cr
#Endif
 Next

 324

 GetCRC 5
 Puta Channel,rmsg,8

End Sub

Sub GetCRC(DL As Byte)
 'This part calculates CRC for sending values-----------------------
 uchCRCHi = 0xFF
 uchCRCLo = 0xFF

 For dLen=0 To DL
 uIndex = uchCRCHi Xor rmsg(dLen)' /* calculate the CRC */
 uchCRCHi = uchCRCLo Xor auchCRCHi(uIndex)
 uchCRCLo = auchCRCLo(uIndex)
 Next
 CRC=(uchCRCHi <<8) Or uchCRCLo
 'Store in last two bytes of rmsg
 rmsg(DL+1)=CRC /256
 rmsg(DL+2)=CRC mod 256
End Sub

Function CRCCheck(DL As Byte) As Byte
 'This part calculates CRC for received values-----------------------
 uchCRCHi = 0xFF
 uchCRCLo = 0xFF

 For dLen=0 To DL-2
 uIndex = uchCRCHi Xor rmsg(dLen)' /* calculate the CRC */
 uchCRCHi = uchCRCLo Xor auchCRCHi(uIndex)
 uchCRCLo = auchCRCLo(uIndex)
 Next
 CRC=(uchCRCHi <<8) Or uchCRCLo
 CRC2=(rmsg(DL-1)*256) + rmsg(DL)
#ifdef DEBUGMODE

 Debug Cr,"Calculated CRC: ", hex4 CRC, " Received CRC: ", hex4 CRC2,Cr
#Endif
 If CRC = CRC2 Then
 CRCCheck=1
 Else
 CRCCheck=0
 End If
End Function

*Please check our Forum on the internet, www.cubloc.com for more Modbus
ASCII and RTU examples and MODBUS BASIC include file downloads.
** Please Check APPENDIX H for MODBUS include file source

http://www.cubloc.com/

 325

MEMO

 326

APPENDIX

 327

Appendix A. ASCII CODE

Code char. Code char. Code char. Code char.
00H NUL 20H SPACE 40H @ 60H `
01H SOH 21H ! 41H A 61H a
02H STX 22H “ B 62H b 42H
03H ETX 23H # 43H C 63H c
04H EOT 24H $ D 44H 64H d
05H ENQ 25H % 45H E 65H e
06H ACK 26H & 46H F 66H f
07H BEL 27H ‘ 47H G 67H g
08H BS 28H (48H H 68H h
09H HT 29H) 49H I 69H I
0AH LF 2AH * 4AH J 6AH j
0BH VT 2BH + 4BH K 6BH k
0CH FF 2CH , 4CH L 6CH l
0DH CR 2DH - 4DH M 6DH m
0EH SO 2EH . 4EH N 6EH n
0FH SI 2FH / 4FH O 6FH o

10H DLE 30H 0 50H P 70H p
11H DC1 31H 1 51H Q 71H q
12H DC2 32H 2 52H R 72H r
13H DC3 33H 3 53H S 73H s
14H DC4 34H 4 54H T 74H t
15H NAK 35H 5 55H U 75H u
16H SYN 36H 6 56H V 76H v
17H ETB 37H 7 57H W 77H w
18H CAN 38H 8 58H X 78H x
19H EM 39H 9 59H Y 79H y
1AH SUB 3AH : 5AH Z 7AH z
1BH ESC 3BH ; 5BH [7BH {
1CH FS 3CH < 5CH \ 7CH |
1DH GS 3DH = 5DH] 7DH }
1EH RS 3EH > 5EH ^ 7EH ~
1FH US 3FH ? 5FH _ 7FH DEL

 328

Appendix B.
CUBLOC BASIC Command
summary

Comman

d

Usage

Adin () Variable = ADIN (Channel)
 Variable : Variable to store results (No String or Single)
 Channel : AD Channel Number (not I/O Pin Number)

Alias ALIAS Registername = AliasName
Registername : Register name such as P0, M0, T0 (Do not use D area)
AliasName : An Alias for the Register chosen (up to 32 character)

Arc ARC x, y, r, start, end

Bcd2bin Variable = BCD2BIN(bcdvalue)

 Variable : Variable to store results (Returns LONG)
 bcdvalue : BCD value to convert to binary

Bclr BCLR channel, buffertype
 channel : RS232 Channel (0~3)
 buffertype : 0=Receive, 1=Send, 2=Both

Beep BEEP Port, Length
 Port : Port number (0~255)
 Length : Pulse output period (1~65535)

Bfree Variable = BFREE(channel, buffertype)
 Variable : Variable to store results (No String or Single)
 channel : RS232 Channel number (0~3)
 buffertype: 0=Receive Buffer, 1=Send Buffer

Bin2bcd Variable = BIN2BCD(binvalue)
 Variable : Variable to store results (Returns Long)
 binvalue : Binary value to be converted

Blen Variable = BLEN(channel, buffertype)
 Variable : Variable to store results (No String or Single)
 channel : RS232 Channel number (0~3)
 buffertype: 0=Receive Buffer, 1=Send Buffer

Bmp BMP x, y, filenumber, layer
 X, y : x,y position to display BMP
 Filenumber : BMP File number
 Layer : Layer to display BMP

 329

Box BOX x1, y1, x2, y2

Boxclear BOXCLEAR x1, y1, x2, y2

Boxfill BOXFILL x1, y1, x2, y2,logic

 logic : 0=OR, 1=AND, 2=XOR

Bytein Variable = BYTEIN(PortBlock)
 Variable : Variable to store results (No String or Single)
 PortBlock : I/O Port Block Number (0~15)

Byteout BYTEOUT PortBlock, value
 PortBlock : I/O Port Block Number. (0~15)
 value : Value to be outputted between 0 and 255.

Circle CIRCLE x, y, r

Circlefill CIRCLEFILL x, y, r

Checkbf Variable = CHECKBF(channel)
 Variable : Variable to store results (No String or Single)
 channel : RS232 Channel (0~3)

Color COLOR value

Cls CLS

Clear CLEAR layer

Cmode CMODE value
 value : 0=BOX type, 1=Underline type

Const CONST name [as type] = value

Const
(Array)

CONST type name [as type] = value [,value, value, value…]
 Type = Byte, Integer, Long, String Single

Contrast CONTRAST value
 value : Contrast Value

Count Variable = COUNT(channel)
 Variable : Variable to store results. (No String or Single)
 Channel : Counter Channel number (0~3)

Countreset COUNTRESET channel
 Channel : Counter Channel (0~3)

Csroff CSROFF

 330

Csron CSRON

Dcd Variable = DCD source

 Variable : Variable to store results. (No String or Single)
 Source : source value

Debug DEBUG data
 data : data to send to PC

Decr DECR variable
 Variable : Variable for decrementing. (No String or Single)

Defchr DEFCHR code, data
 Code : Custom character code (&hdb30 ~ &hdbff)
 Data : 32byte bitmap data

Delay DELAY time
 Time : interval variable or constant

Dim DIM variable As variabletype [,variable As variabletype]
 Variabletype : Byte, Integer, Long, Single, String

Dotsize DOTSIZE value, style

Dprint DPRINT string

Dtzero DTZERO variable
 Variable : Variable for decrement. (No String or Single)

Eadin Variable = EADIN (mux)
 Variable : Variable to store results (No String or Single)
 mux : AD input Port Combination MUX (0~21)

Eeread Variable = EEREAD (Address, ByteLength)
 Variable : Variable to store result (No String or Single)
 Address : 0 ~ 4095
 ByteLength : Number of Bytes to read (1~4)

Eewrite EEWRITE Address, Data, ByteLength
 Address : 0 to 4095
 Data : Data to write to EEPROM (up to Long type values)
 ByteLength : Number of Bytes to write (1~4)

Ekeypad Variable = EKEYPAD(portblockIn, portblockOut)
 Variable : Variable to store results (Returns Byte)
 PortblockIn : Port Block to receive input (0~15)
 PortblockOut : Port Block to output (0~15)

 331

Ellipse ELLIPSE x, y, r1, r2

Elfill ELFILL x, y, r1, r2

Font FONT fontsize, efontwidth

 fontsize : 0~8 Font Selection
 efontwidth : 0 = fixed width, 1=variable width

Freqout FREQOUT Channel, FreqValue
 Channel : PWM Channel (0~15)
 FreqValue : Frequency value between 1 and 65535

Get Variable = GET(channel, length)
 Variable : Variable to store results (Cannot use String,
Single)
 channel : RS232 Channel (0~3)
 length : Length of data to receive (1~4)

Getstr Variable = GETSTR(channel, length)
 Variable : String Variable to store results
 channel : RS232 Channel
 length : Length of data to receive

Geta GETA channel, ArrayName, bytelength
 channel : RS232 Channel (0~3)
 ArrayName : Array to store Received data (No String or Single)
 Bytelength : Number of Bytes to store (1~65535)

Glayer GLAYER layernumber
 Layernumber : Set the graphic layer. (0,1,2)

Glocate GLOCATE x, y

Gpaste GPASTE x, y, layer, logic
 logic =0 : OR
 logic =1 : AND
 logic =2 : XOR
 logic =3 : Clear screen then pop

Gprint GPRINT string

Gpush GPUSH x1, y1, x2, y2, layer

Gpop GPOP x, y, layer, logic
 logic =0 : OR
 logic =1 : AND
 logic =2 : XOR
 logic =3 : Clear screen then pop

 332

High HIGH Port

 Port : I/O Port number

Hpaste HPASTE x, y, layer

Hpop HPOP x, y, layer

Hpush HPUSH x1, y1, x2, y2, layer

I2cstart I2CSTART

I2cstop I2CSTOP

I2cread

 dummy : dummy value. (Normally 0)

Variable = I2CREAD(dummy)
 Variable : Variable to store results. (No String or Single)

I2cwrite Variable = I2CWRITE data

(0=Acknowledged, 1=No Acknowledgement)
Variable : Acknowledge

 data : data to send (Byte value : 0~255)

In Variable = IN(Port)
 Variable : The variable to store result (No String or Single)
 Port : I/O Port number (0~255)

Incr INCR variable

 Variable : Variable for increment. (No String or Single)

Input
 Port : I/O Port number (0~255)
INPUT Port

Keyin Variable = KEYIN(Port, debouncingtime)

 Variable : Variable to store results (No String or Single)
 Port : Input Port (0~255)
 deboucingtime : Debouncing Time (1~65535)

Keyinh

Variable = KEYINH(Port, debouncingtime)
 Variable : Variable to store results (No String or Single)
 Port : Input Port (0~255)
 deboucingtime : Debouncing Time (0~65535)

Keypad Variable = KEYPAD(PortBlock)
Variable : Variable to store results (Returns Byte, No String or

Single)
PortBlock : Port Block (0~15)

 333

Layer LAYER layer1mode, layer2 mode, layer3 mode

 Layer1mode : Set Layer 1 mode (0=off, 1=on, 2=flash)
 Layer2mode : Set Layer 2 mode (0=off, 1=on, 2=flash)
 Layer3mode : Set Layer 3 mode (0=off, 1=on, 2=flash)

Ladderscan LADDERSCAN

Light LIGHT value
 value : Back light 0=OFF, 1=ON

Line

LINE x1, y1, x2, y2

Linestyle LINESTYLE value

Lineto LINETO x, y

Low LOW Port
 Port : I/O Port number (0~255)

Locate LOCATE X,Y

Menu Variable = MENU(index, pos)
 Variable : Variable to store results

 pos : Position (0=x1, 1=y1, 2=x2, 3=y2)

(1 = selected, 0 = unselected)
 Index : Menu Index

Memadr Variable = MEMADR (TargetVariable)

 Variable : Variable to store results (No String or Single)
 TargetVariable : Variable to find physical memory address

Menucheck Variable = MENUCHECK(index, touchx, touchy)
 Variable : Variable to store results

 Touchx : Touch pad x axis point
 Touchy : Touch pad y axis point

(1 if selected, 0 if unselected)
 Index : Menu Index Number

Menu
Reverse

MENUREVERSE index
 Index : Menu index number

Menuset MENUSET index, style, x1, y1, x2, y2

 X1,y1,x2,y2 : Menu Button location

 Index : Menu Index Number
 Style : Button Style; 0=none, 1=Box, 2=Box with Shadow

Menutitle

Index :Menu index number
X,y : Title location based on left upper corner of button

MENUTITLE index, x, y, string

string : Name of the menu

Ncd Variable = NCD source

 334

 Variable : Variable to store results. (No String or Single)

 Source : source value (0~31)

Nop NOP

Offset OFFSET x, y

On int ON INTx GOSUB label
 x : 0 to 3, External Interrupt Channel

On
ladderint

ON LADDERINT GOSUB label

On pad ON PAD GOSUB label

On recv ON RECV1 GOSUB label

On timer ON TIMER(interval) GOSUB label

1 to 65535 can be used

 Interval : Interrupt Interval 1=10ms,
 2=20ms……65535=655350ms

Opencom

 Baudrate : Baudrate (Do not use variable)

OPENCOM channel, baudrate, protocol, recvsize, sendsize
 channel : RS232 Channel (0~3)

 protocol : Protocol (Do not use variable)
 recvsize : Receive Buffer Size (Max. 1024, Do not use variable)
 sendsize : Send Buffer Size (Max. 1024, Do not use
variable)

Out OUT Port, Value
 Port : I/O Port number (0~255)
 Value : Value to be outputted to the I/O Port (1 or 0)

Output OUTPUT Port
 Port : I/O Port number (0~255)

Outstat Variable = OUTSTAT(Port)
 Variable : Variable to store results. (No String or Single)
 Port : I/O Port Number (0~255)

Overlay OVERLAY overmode
 overmode : Logical Mode (0=or, 1=and, 2=xor)

Paint PAINT x, y

Pause PAUSE value

Peek Variable = PEEK (Address, Length)

 length : Length of Bytes to read (1~4)

 Variable : Variable to Store Result. (No String or Single)
 Address : RAM Address.

 335

 length : length of bytes to read (1~4)

Poke POKE Address, Value, Length

 Address : RAM Address
 Value : Variable to store results (up to Long type value)

Print PRINT String / Variable
 String : String
 Variable : When using variables/constants,

String representation of the variable/constant will be printed.

Pset

PSET x, y

Pulsout

 Period : Pulse Period (1~65535)

PULSOUT Port, Period
 Port : Output Port (0~255)

Put

 Data : Data to send (up to Long type value)

PUT channel, data, bytelength
 channel : RS232 Channel (0~3)

 Bytelength : Length of Data (1~3)

Putstr PUTSTR channel, data…
 channel : RS232 Channel. (0~3)
 Data : String Data (String variable or String constant)

Puta PUTA channel, ArrayName, bytelength
 channel : RS232 Channel. (0~3)
 ArrayName : Array Name
 Bytelength : Bytes to Send (1~65535)

Pwm PWM Channel, Duty, Period
 Channel : PWM Channel Number (0~15)
 Duty : Duty Value, must be less than the Width.
 Period : Maximum of 65535

Pwmoff PWMOFF Channel
 Channel : PWM Channel. (0~15)

Ramclear RAMCLEAR

Reverse REVERSE Port
 Port : I/O Port Number. (0~15)

Set
display

SET DISPLAY type, method, baud, buffersize
 type : 0=Rs232LCD, 1=GHLCD GHB3224, 2=CLCD
 Method : Communication Method 0=CuNET, 1=COM1
 baud : Baud rate (CuNET Slave address)
 Buffersize : Send Buffer Size

 336

Set
debug

SET DEBUG On[/Off]

Set i2c SET I2C DataPort, ClockPort
 DataPort : SDA, Data Send/Receive Port. (0~255)
 ClockPort : SCL, Clock Send/Receive Port. (0~255)

Set
ladder

SET LADDER On[/Off]

Set
modbus

Set Modbus mode, slaveaddress
 mode : 0=ASCII, 1=RTU (Currently, only ASCII
supported)
 slaveaddress : Slave Address (1 to 254)

Set
outolny

SET OUTONLY On[/Off]

Set
Pad

SET PAD mode, packet, buffersize
 mode : Bit Mode (0~255)
 packet : Packet Size (1~255)
 buffersize : Receive Buffer Size (1~255)

Set
rs232

SET RS232 channel, baudrate, protocol
 channel : RS232 Channel (0~3)
 Baudrate : Baudrate (Do not use variable)
 protocol : Protocol (Do not use variable)

Set
until

SET UNTIL channel, packetlength, untilchar
 channel : RS232 Channel. (0~3)
 packetlength : Length of packet (0~255)
 untilchar : Character to catch

Set
Int

SET INTx mode
 x : 0 to 3, External Interrupt Channel
 mode : 0=Falling Edge, 1=Rising Edge, 2=Changing Edge

Set
Onglobal

SET ONGLOBAL On[/Off]

Set
onint

SET ONINTx On[/Off]

Set
onladderint

SET ONLADDERINT On[/Off]

Set
onpad

SET ONPAD On[/Off]

Set
onrecv

SET ONRECV0 On[/Off]
SET ONRECV1 On[/Off]

Set
Ontimer

SET ONTIMER On[/Off]

 337

Variable = SHIFTIN(clock, data, mode, bitlength)

Shiftin

 Variable : Variable to store results. (No String or Single)
 Clock : Clock Port. (0~255)
 Data : Data Port. (0~255)
 Mode : 0 = LSB First (Least Significant Bit First), After Rising
Edge
 1 = MSB First (Most Significant Bit First), After Rising
Edge
 2 = LSB First (Least Significant Bit First), After Falling
Edge
 3 = MSB First (Most Significant Bit First), After Falling
Edge
 4 = LSB First (Least Significant Bit First), Before Rising
Edge
 5 = MSB First (Most Significant Bit First), Before Rising
Edge
 bitlength : Length of bits (8 to 16)

Shiftout SHIFTOUT clock, data, mode, variable, bitlength
 Clock : Clock Port. (0~255)

 1 = MSB First (Most Significant Bit First)
 2 = MSB First(Most Significant Bit First) , Create ACK (For I2C)

 Data : Data Port. (0~255)
 Mode : 0 = LSB First (Least Significant Bit First)

 variable : Variable to store data (up to 65535)
 bitlength : Bit Length (8 to 16)

Style

 underline : 0=Normal, 1=Underline

STYLE bold, inverse, underline
 bold : 0=Normal, 2 or 3 =Bold
 inverse : 0=Normal, 1=Inverse

Sys Variable = SYS(address)

 Variable : Variable to store results. (No String or Single)
 address : Address. (0~255)

Tadin Variable = TADIN(Channel)
 Variable : Variable to store results. (No String or Single)
 Channel : AD Channel Number (Not Port number, 0~15)

Time Variable = TIME (address)
 Variable : Variable to store results. (No String or Single)
 address : Address of time value (0 to 6)

Timeset TIMESET address, value
 address : Address of time value (0 to 6)
 value : time value. (0~255)

Udelay UDELAY time

 time : interval (1~65535)

 338

Usepin USEPIN I/O, In/Out, AliasName

 I/O : I/O Port Number. (0~255)
 In/Out : “In” or “Out”
 AliasName : Alias for the port (Optional)

Utmax UTMAX variable
 Variable : Variable for decrement. (No String or Single)

Waittx WAITTX channel
 channel : RS232Channel. (0~3)

Wmode

WMODE value
 value : 0=FAST, 1=SLOW

 339

Appendix C. MODBUS RTU
Include Files
<CRCtable.inc>

'/* Table of CRC values For High.order Byte */

Const Byte auchCRCHi = (_

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,_

0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,_

0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,_

0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,_

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,_

0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,_

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,_

0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,_

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,_

0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,_

0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,_

0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,_

0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,_

0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,_

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,_

0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,_

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,0x40)

Const Byte auchCRCLo = (_

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,_

0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,_

0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,_

0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,_

0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,_

0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,_

0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,_

0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,_

0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,_

0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,_

0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,_

0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,_

0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,_

0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,_

0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,_

0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,_

0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,0x40)

'You can uncomment this line out to watch actual received and sending bytes of

'the low-level MODBUS functions

'#define DEBUGMODE 1

#define CHANNEL 1

'You can set the timeout for receiving back acknowledgement here (Depending on

'the MODBUS Slav Device, you might want to change this)

 340

#define TIMEOUT 30'Timeout value = 10ms *30 = 300ms

'Set Debug Off
'You can comment this line out if NOT using a RS485CHIP (if you are using a
'converter)
'#define RS485CHIP 1
#define WRITECRC_CHECK 1

'Turnaround Delay Time is delay time for broadcasting or
'when WriteCRC is not checked to give time for the slave device to perform
'duties or
'respond. Usually this is recommended to be set between 100 to 200.
'BUT if your slave device can work much faster, you could set it almost to 1
'(e.g. Simultaneous motor control)

#define TURNAROUND_DELAYTIME 200
#ifdef RS485CHIP
 #define REDE 10 'Pin number of REDE transmit/receive

signal
 #define TDELAY Udelay 80'Delay for REDE after transmit
#Endif

'Global device name and check error variables
 Dim iDevice As Integer
 Dim iReturn As Byte

' Uncomment below to use On Timer() substitute
' Dim SavedTime As Integer
 Dim test As Long
 'Variables for MODBUS--------
 Dim a As Integer, ct As Byte
 Dim rmsg(100) As Byte

 Dim CurrentTime As Integer
 Dim DataLength As Byte
 Dim ReceiveLength As Integer
 Dim empty As Byte
 '---------------------------

 'Variables for CRC Calculations-------
 Dim uchCRCHi As Byte, uchCRCLo As Byte
 Dim dLen As Byte
 Dim uIndex As Integer
 Dim CRC As Integer
 Dim CRC2 As Integer
 '-------------------------------------
 'Variable for PresetMultipleRegister (Multiple Bit Write)
 Dim DataArray(50) As Integer
 Dim SDataArray(50) As Single
 Dim LDataArray(50) As Long
 Dim BDataArray(50) As Byte
 Dim Clock As Integer

 'Set Device number as variable
 iDevice=1
 a=0

 341

<ModbusRTUrecv.bas>
MyClock:
 Incr Clock
Return

'DataArrival for Com1$$
'Store into rmsg array when datareceived
GETMODBUS:
If Blen(1,0) > 0 Then ' If buffer larger than zero then

 a=Blen(1,0) ' Store the buffer length in A!'

 For ct=0 To a
 If (ReceiveLength) <= DataLength Then
 rmsg(ReceiveLength)=Get(1,1) ' Store received data in

B
#ifdef DEBUGMODE
 Debug Hp(rmsg(ReceiveLength),2,1)
#Endif
 Incr ReceiveLength
 Else
 'If data received, simply discard it
 empty=Get(1,1)
#ifdef DEBUGMODE
 Debug hex2 empty
#Endif
 End If

 Next

End If
Return

 342

<ModbusRTULib016.bas>
'**
'High-level CODE for MODBUS ---
'
'***

'***Read Functions***
'Reading Multiple Long values in Holding Registers
Sub ReadMultipleLong(SlaveAddr As Integer,addr As Integer, num As Byte)
 Dim rct As Byte, rct2 As Byte
 iReturn = ReadHoldingRegisters(SlaveAddr, addr, num*2)
 CheckStatus
 if iReturn=0 then
 rct2=0
 For rct = 0 To num-1
 'Store 2 WORD registers into a LONG variable array
 LDataArray(rct)=(DataArray(rct2)<<16)+DataArray(rct2+1)
 rct2=rct2+2
 Debug Cr,"LONG Result in holding register ", Dec rct2, ": ", Dec

LDataArray(rct),Cr
 Next
 end if

End Sub
Sub ReadMultipleSingle(SlaveAddr As Integer,addr As Integer, num As Byte)
 Dim rct As Byte, rct2 As Byte
 Dim Sval As Single
 Dim Lval As Long
 iReturn = ReadHoldingRegisters(SlaveAddr, addr, num*2)
 CheckStatus
 if iReturn=0 then
 rct2=0
 For rct = 0 To num-1
 Lval=(DataArray(rct2)<<16) + DataArray(rct2+1)
 Poke Memadr(Sval) ,Lval,4' DataArray (rct2),2
 SDataArray(rct)=Sval
 rct2=rct2+2
 Debug Cr,"Single Result in holding register", Dec rct, " ",Float

SDataArray(rct),Cr
 Next
 end if

End Sub

'***Write Functions**

Sub WriteSingle(SlaveAddr As Integer,addr As Integer, snum As Single)
 DataArray(0)=(snum And 0xffff) >>16
 DataArray(1)=(snum And 0xffff)
 iReturn = PresetMultipleRegisters(SlaveAddr, addr, 2)

 CheckStatus
End Sub

Sub WriteMultipleLong(SlaveAddr As Integer,addr As Integer,Length As Byte)
 Dim wct As Byte,wct2 As Byte
 wct2=0
 For wct = 0 To Length-1
 DataArray(wct2)=(LDataArray(wct)>>16) And 0xffff
 Incr wct2
 DataArray(wct2)=(LDataArray(wct) And 0xffff)
 Incr wct2
 Next
 iReturn = PresetMultipleRegisters(SlaveAddr, addr, Length*2)
 CheckStatus
End Sub

Sub WriteMultipleSingle(SlaveAddr As Integer,addr As Integer,Length As Byte)
 Dim wct As Byte,wct2 As Byte
 wct2=0
 For wct = 0 To Length-1
 DataArray(wct2)=(SDataArray(wct) And 0xffff) >>16
 Incr wct2
 DataArray(wct2)=(SDataArray(wct) And 0xffff)
 Incr wct2
 Next
 iReturn = PresetMultipleRegisters(SlaveAddr, addr, Length*2)
 CheckStatus
End Sub

Sub CheckStatus()

 343

 'if iReturn does not equal 0 then error message
 If iReturn = 1 Then
 Debug "CRC INCorrect!",Cr
 Elseif iReturn = 2 Then
 Debug "No data recevied within TIMEOUT set to : ", Dec (TIMEOUT*10)," ms",Cr
 End If
End Sub

'**
'Low-level CODE for MODBUS --
'
'**

'Read

codes%%

'ReadInputRegisters (Word Read)
'Results stored in Global Variable DataArray()
Function ReadCoilStatus(SlaveAddr As Byte ,StartAddr As Integer, Length As Integer) As Byte

 Bclr 1,2 ' clear all buffers
 ReceiveLength=0

 If Length mod 8 <> 0 Then
 DataLength=5 + (Length/8) '4 + (Length*2)
 Else
 DataLength=5 + (Length/8)-1 '4 + (Length*2)
 End If
 rmsg(0)=SlaveAddr
 'function code for word read (or for holding registers)
 rmsg(1)=0x01
 '--
 rmsg(2)=StartAddr /256
 rmsg(3)=StartAddr mod 256
 rmsg(4)=Length /256
 rmsg(5)=Length mod 256

 GetCRC 5

 'send 8 bytes of data!
#ifdef DEBUGMODE
 Debug Cr,"start sending..."
 Debug "DataLength: ", Dec DataLength,"..."

 For ct=0 To 7
 Debug Hp(rmsg(ct),2,1)
 Next
#Endif
 a=0
#ifdef RS485CHIP
 Out REDE,1
#Endif
 Puta 1,rmsg,8
#ifdef RS485CHIP

'Option 1
 Waittx 1
 TDELAY
 Out REDE,0

#Endif

#ifdef DEBUGMODE
 Debug "...done",Dec Sys(5),Cr
#Endif

WaitForResponse TIMEOUT

 If ReceiveLength=DataLength+1 Then

 If Length mod 8 <> 0 Then
 For ct=0 To (Length/8)
 BDataArray(ct)=rmsg(3+ct)
#ifdef DEBUGMODE
 Debug Cr,"BDataArray:", Dec BDataArray(ct)
#Endif
 Next
 Else
 For ct=0 To (Length/8)-1
 BDataArray(ct)=rmsg(3+ct)
#ifdef DEBUGMODE
 Debug Cr,"BDataArray:", Dec BDataArray(ct)
#endif
 Next
 End If

 344

 If CRCCheck(DataLength)=1 Then
 ReadCoilStatus=0
 Else
 ReadCoilStatus=1
 End If

 Else
 ReadCoilStatus=2
 End If
End Function

'ReadInputRegisters (Word Read)
'Results stored in Global Variable DataArray()
Function ReadInputStatus(SlaveAddr As Byte ,StartAddr As Integer, Length As Integer) As Byte

 Bclr 1,2 ' clear all buffers
 ReceiveLength=0

 If Length mod 8 <> 0 Then
 DataLength=5 + (Length/8) '4 + (Length*2)
 Else
 DataLength=5 + (Length/8)-1 '4 + (Length*2)
 End If
 rmsg(0)=SlaveAddr
 'function code for word read (or for holding registers)
 rmsg(1)=0x02
 '--
 rmsg(2)=StartAddr /256
 rmsg(3)=StartAddr mod 256
 rmsg(4)=Length /256
 rmsg(5)=Length mod 256

 GetCRC 5

 'send 8 bytes of data!
#ifdef DEBUGMODE
 Debug Cr,"start sending..."
 Debug "DataLength: ", Dec DataLength,"..."

 For ct=0 To 7
 Debug Hp(rmsg(ct),2,1)
 Next
#Endif
 a=0
#ifdef RS485CHIP
 Out REDE,1
#Endif
 Puta 1,rmsg,8
#ifdef RS485CHIP

'Option 1
 Waittx 1
 TDELAY
 Out REDE,0

#Endif

#ifdef DEBUGMODE
 Debug "...done",Dec Sys(5),Cr
#Endif

WaitForResponse TIMEOUT

 If ReceiveLength=DataLength+1 Then

 If Length mod 8 <> 0 Then
 For ct=0 To (Length/8)
 BDataArray(ct)=rmsg(3+ct)
#ifdef DEBUGMODE
 Debug Cr,"BDataArray:", Dec BDataArray(ct)
#Endif
 Next
 Else
 For ct=0 To (Length/8)-1
 BDataArray(ct)=rmsg(3+ct)
#ifdef DEBUGMODE
 Debug Cr,"BDataArray:", Dec BDataArray(ct)
#endif
 Next
 End If

 345

 If CRCCheck(DataLength)=1 Then
 ReadInputStatus=0
 Else
 ReadInputStatus=1
 End If

 Else
 ReadInputStatus=2
 End If
End Function

'ReadHoldingRegisters (Word Read)
'Results stored in Global Variable DataArray()
Function ReadHoldingRegisters(SlaveAddr As Byte ,StartAddr As Integer, Length As Integer) As

Byte

 Bclr 1,2 ' clear all buffers
 ReceiveLength=0
 DataLength=4 + (Length*2)
 rmsg(0)=SlaveAddr
 'function code for word read (or for holding registers)
 rmsg(1)=0x03
 '--
 rmsg(2)=StartAddr /256
 rmsg(3)=StartAddr mod 256
 rmsg(4)=Length /256
 rmsg(5)=Length mod 256

 GetCRC 5

 'send 8 bytes of data!
#ifdef DEBUGMODE
 Debug Cr,"start sending..."
 For ct=0 To 7
 Debug Hp(rmsg(ct),2,1)
 Next
#Endif
 a=0
#ifdef RS485CHIP
 Out REDE,1
#Endif
 Puta 1,rmsg,8
#ifdef RS485CHIP

'Option 1
 Waittx 1
 TDELAY
'Option 2
' Delay 5
 Out REDE,0

#Endif

#ifdef DEBUGMODE
 Debug "...done",Dec Sys(5),Cr
#Endif

 WaitForResponse TIMEOUT

 If ReceiveLength=DataLength+1 Then
#ifdef DEBUGMODE
 Debug Cr,"Length: ",Dec Length, Cr
#Endif

 For ct=0 To Length-1
 DataArray(ct)=(rmsg(3+(ct*2)))*256
 '******************************
 DataArray(ct)=DataArray(ct)+rmsg(4+(ct*2))
 Next

 If CRCCheck(DataLength)=1 Then
 ReadHoldingRegisters=0
 Else
 ReadHoldingRegisters=1
 End If

 Else
 ReadHoldingRegisters=2
 End If
End Function

'ReadInputRegisters (Word Read)
'Results stored in Global Variable DataArray()

 346

Function ReadInputRegisters(SlaveAddr As Byte ,StartAddr As Integer, Length As Integer) As Byte

 Bclr 1,2 ' clear all buffers
 ReceiveLength=0

 DataLength=4 + (Length*2)
 rmsg(0)=SlaveAddr
 'function code for word read (or for holding registers)
 rmsg(1)=0x04
 '--
 rmsg(2)=StartAddr /256
 rmsg(3)=StartAddr mod 256
 rmsg(4)=Length /256
 rmsg(5)=Length mod 256

 GetCRC 5

 'send 8 bytes of data!
#ifdef DEBUGMODE
 Debug Cr,"start sending..."
 For ct=0 To 7
 Debug Hp(rmsg(ct),2,1)
 Next
#Endif
 a=0
#ifdef RS485CHIP
 Out REDE,1
#Endif
 Puta 1,rmsg,8
#ifdef RS485CHIP

'Option 1
 Waittx 1
 TDELAY

 Out REDE,0

#Endif

#ifdef DEBUGMODE
 Debug "...done",Dec Sys(5),Cr
#Endif

 WaitForResponse TIMEOUT

 If ReceiveLength=DataLength+1 Then

#ifdef DEBUGMODE
 Debug Cr,"Length: ",Dec Length, Cr
#Endif

 For ct=0 To Length-1
 DataArray(ct)=(rmsg(3+(ct*2)))*256
 '******************************
 DataArray(ct)=DataArray(ct)+rmsg(4+(ct*2))

 Next

' Debug Cr, hex4 DataArray(0),Cr

 If CRCCheck(DataLength)=1 Then
 ReadInputRegisters=0
 Else
 ReadInputRegisters=1
 End If

 Else
 ReadInputRegisters=2
 End If
End Function

'Write codes%%

'MODBUS Function Code 05>>
'ForceSingleCoil (1 Bit Write)
Function ForceSingleCoil(SlaveAddr As Byte ,StartAddr As Integer, DATA As Integer) As Byte

 Bclr 1,2 ' clear all buffers
 ReceiveLength=0
 DataLength=7

 347

 rmsg(0)=SlaveAddr
 'function code for word read (or for holding registers)
 rmsg(1)=0x05
 '--
 rmsg(2)=StartAddr /256
 rmsg(3)=StartAddr mod 256
 If DATA=0 Then
 rmsg(4)=0
 rmsg(5)=0
 Elseif DATA=1 Then
 rmsg(4)=0xff
 rmsg(5)=0
 End If

 GetCRC 5
#ifdef DEBUGMODE
 'send 8 bytes of data!
 Debug Cr,"start sending..."

 For ct=0 To 7
 Debug Hp(rmsg(ct),2,1)
 Next
 Debug Cr
#Endif

 a=0
#ifdef RS485CHIP
 Out REDE,1
#Endif
 Puta 1,rmsg,8
#ifdef RS485CHIP
 Waittx 1
 TDELAY
 Out REDE,0
#Endif

#ifdef DEBUGMODE
 Debug "...done",Dec Sys(5),Cr
#Endif

If SlaveAddr <> 0 Then

#ifdef WRITECRC_CHECK
 WaitForResponse TIMEOUT

 If ReceiveLength=DataLength+1 Then

 If CRCCheck(DataLength)=1 Then
 ForceSingleCoil=0
 Else
 ForceSingleCoil=1
 End If

 Else
 ForceSingleCoil=2
 End If
#Else
 Delay TURNAROUND_DELAYTIME
#Endif

Else
 Delay TURNAROUND_DELAYTIME
End If
End Function

'MODBUS Function Code 06>>>
'PresetSingleRegister (or 1 Word Write)
Function PresetSingleRegister(SlaveAddr As Integer,StartAddr As Integer, DATA As Integer) As

Byte

 Bclr 1,2 ' clear all buffers
 ReceiveLength=0
 DataLength=7
 rmsg(0)=SlaveAddr
 'function code for word read (or for holding registers)
 rmsg(1)=0x06
 '--
 rmsg(2)=StartAddr /256
 rmsg(3)=StartAddr mod 256
 rmsg(4)=Data/256
 rmsg(5)=Data mod 256

 GetCRC 5
 'send 8ytes of data!
#ifdef DEBUGMODE
 Debug Cr,"start sending..."
 For ct=0 To 7
 Debug Hp(rmsg(ct),2,1)

 348

 Next
#Endif

 a=0
#ifdef RS485CHIP
 Out REDE,1
#Endif
 Puta 1,rmsg,8
#ifdef RS485CHIP
'Option 1
 Waittx 1
 TDELAY
'Option 2
' Delay 5
 Out REDE,0
#Endif

#ifdef DEBUGMODE
 Debug "...done",Cr
#Endif

If SlaveAddr <> 0 Then

#ifdef WRITECRC_CHECK
 WaitForResponse TIMEOUT

 If ReceiveLength=DataLength+1 Then
#ifdef DEBUGMODE
 For ct=0 To DataLength
 Debug Hp(rmsg(ct),2,1)
 Next
#Endif

 If CRCCheck(DataLength)=1 Then
 PresetSingleRegister= 0
 Else
 PresetSingleRegister= 1
 End If
 Else
 PresetSingleRegister= 2
 End If
#Else
 Delay TURNAROUND_DELAYTIME
#Endif

Else
 Delay TURNAROUND_DELAYTIME
End If

End Function

'MODBUS Function Code 15>>
'ForceMultipleCoils (Multiple Bit Write)
Function ForceMultipleCoils(SlaveAddr As Byte ,StartAddr As Integer, Length As Integer) As Byte
 Dim ByteLength As Integer
 Dim fct As Byte
 Bclr 1,2 ' clear all buffers
 ReceiveLength=0
 DataLength=7
 rmsg(0)=SlaveAddr
 'function code for word read (or for holding registers)
 rmsg(1)=0x0F
 '--
 rmsg(2)=StartAddr /256
 rmsg(3)=StartAddr mod 256
 rmsg(4)=Length /256
 rmsg(5)=Length mod 256
 ByteLength=Length / 8
 If Length mod 8 <> 0 Then Incr ByteLength

 rmsg(6)=ByteLength
 Debug "bytelength: ", Dec ByteLength,Cr
 For fct=0 To ByteLength-1
 rmsg(7+fct)=DataArray(fct)
 Next

 GetCRC 6+fct
#ifdef DEBUGMODE
 'send 8 bytes of data!
 Debug Cr,"start sending..."

 For ct=0 To 8+fct
 Debug Hp(rmsg(ct),2,1)
 Next
 Debug Cr
#Endif

 a=0

 349

#ifdef RS485CHIP
 Out REDE,1
#Endif
 Puta 1,rmsg,9+fct
#ifdef RS485CHIP
 Waittx 1
 TDELAY
 Out REDE,0
#Endif

#ifdef DEBUGMODE
 Debug "...done",Dec Sys(5),Cr
#Endif

If SlaveAddr <> 0 Then

#ifdef WRITECRC_CHECK
 WaitForResponse TIMEOUT

 If ReceiveLength=DataLength+1 Then

 If CRCCheck(DataLength)=1 Then
 ForceMultipleCoils=0
 Else
 ForceMultipleCoils=1
 End If

 Else
 ForceMultipleCoils=2
 End If
#Else
 Delay TURNAROUND_DELAYTIME
#Endif

Else
 Delay TURNAROUND_DELAYTIME
End If
End Function

'PresetMultipleRegisters (or Multiple Word Write)

Function PresetMultipleRegisters(SlaveAddr As Integer,StartAddr As Integer, Length As Integer) As
Byte

 Dim ByteLength As Integer
 Dim fct As Byte,fct2 As Byte
 Bclr 1,2 ' clear all buffers
 ReceiveLength=0
 DataLength=7
 ' Debug Cr,"datalength", Dec DataLength,Cr
 rmsg(0)=SlaveAddr
 'function code for word read (or for holding registers)
 rmsg(1)=0x10
 '--
 rmsg(2)=StartAddr /256
 rmsg(3)=StartAddr mod 256
 rmsg(4)=Length/256
 rmsg(5)=Length mod 256
 'ByteCount
 ByteLength=Length*2
 rmsg(6)=ByteLength

 Debug "length: ", Dec Length,Cr
 fct2=6
 For fct=0 To Length-1
 Incr fct2
 rmsg(fct2)=DataArray(fct) /256
 Incr fct2
 rmsg(fct2)=DataArray(fct) mod 256
 Next

 GetCRC fct2 '6 + fct
#ifdef DEBUGMODE
 'send 8ytes of data!
 Debug Cr,"start sending..."
 For ct=0 To fct2+2
 Debug Hp(rmsg(ct),2,1)
 Next
#Endif
 a=0
#ifdef RS485CHIP
 Out REDE,1
#Endif
 Puta 1,rmsg,fct2+3 '13
#ifdef RS485CHIP
'Option 1
 Waittx 1
 TDELAY

 Out REDE,0

 350

#Endif
#ifdef DEBUGMODE
 Debug "...done",Cr
#Endif
If SlaveAddr <> 0 Then

#ifdef WRITECRC_CHECK
 WaitForResponse TIMEOUT

 If ReceiveLength=DataLength+1 Then
#ifdef DEBUGMODE
 For ct=0 To DataLength
 Debug Hp(rmsg(ct),2,1)
 Next
#Endif

 If CRCCheck(DataLength)=1 Then
 PresetMultipleRegisters=0
 Else
 PresetMultipleRegisters=1
 End If

 Else
 PresetMultipleRegisters=2
 End If

#Else
 Delay TURNAROUND_DELAYTIME
#Endif

Else
 Delay TURNAROUND_DELAYTIME
End If

End Function

Sub WaitForResponse(TOUT As Integer)
 Dim ElapsedTime As Integer
 'Save current system time in CurrentTime variable
 CurrentTime=Clock
 'Wait until TOUT value timeout is reached
 ElapsedTime=Clock-CurrentTime
 Do While a=0 And (ElapsedTime<TOUT)
 ElapsedTime=Clock-CurrentTime
 Loop
End Sub

Function CRCCheck(DL As Byte) As Byte
 'This part calculates CRC for received values-----------------------
 uchCRCHi = 0xFF
 uchCRCLo = 0xFF

 For dLen=0 To DL-2
 uIndex = uchCRCHi Xor rmsg(dLen)' /* calculate the CRC */
 uchCRCHi = uchCRCLo Xor auchCRCHi(uIndex)
 uchCRCLo = auchCRCLo(uIndex)
 Next
 CRC=(uchCRCHi <<8) Or uchCRCLo
 CRC2=(rmsg(DL-1)*256) + rmsg(DL)
#ifdef DEBUGMODE

 Debug Cr,"Response from RTU Device ID: ",Dec iDevice,Cr
 Debug Cr,"Calculated CRC: ", hex4 CRC, " Received CRC: ", hex4 CRC2,Cr
#endif
 If CRC = CRC2 Then
 CRCCheck=1
 Else
 CRCCheck=0
 End If
End Function

Sub GetCRC(DL As Byte)
 'This part calculates CRC for sending values-----------------------
 uchCRCHi = 0xFF
 uchCRCLo = 0xFF

 For dLen=0 To DL
 uIndex = uchCRCHi Xor rmsg(dLen)' /* calculate the CRC */
 uchCRCHi = uchCRCLo Xor auchCRCHi(uIndex)
 uchCRCLo = auchCRCLo(uIndex)
 Next
 CRC=(uchCRCHi <<8) Or uchCRCLo
 'Store in last two bytes of rmsg

 351

 rmsg(DL+1)=CRC /256
 rmsg(DL+2)=CRC mod 256
End Sub

<CRCtable2.inc>

'/* Table of CRC values For High.order Byte */
Const Byte auchCRCHi = (_
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,_
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,_
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,_
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,_
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,_
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,_
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,_
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,_
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,_
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,_
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,_
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,_
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,_
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,_
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,_
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,_
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,0x40)

Const Byte auchCRCLo = (_
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,_
0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,_
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,_
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,_
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,_
0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,_
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,_
0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,_
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,_
0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,_
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,_
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,_
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,_
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,_
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,_
0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,_
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,0x40)

 'Variables for CRC Calculations-------
 Dim uchCRCHi As Byte, uchCRCLo As Byte
 Dim dLen As Byte
 Dim uIndex As Integer
 Dim CRC As Integer
 Dim CRC2 As Integer

 352

Arc Sine 156

AVREF................................ 164

bits.................................... 135

BOXCLEAR...................280, 329

CALLS.................................115

CLEAR 273, 329

comparisons......................... 98

COUNT 176, 329

Index

Ａ

ABS 156
ADIN...........................164, 328
ALIAS76, 154, 166, 328
AND..................................... 86
ARC285, 328
Arc Cos 156

Arc Tan 156
arrays 134
ASC 161

Ｂ

BASIC interpreter.................. 26
baudrate 219
BCD2BIN.....................167, 328
BCLR168, 328
BEEP...........................169, 328
BFREE.........................170, 328
BIN2BCD.....................171, 328

BLEN...........................172, 328
BMP............................286, 328
BOX............................279, 329

BOXFILL......................280, 329
Byte................................... 129
BYTEIN173, 329
BYTEOUT.....................174, 329
bytes 135

Ｃ

CB280 relays........................ 71
CB290 relays........................ 72
CheckBf 175, 329
CHR....................................161
CIRCLE 280, 329
CIRCLEFILL281
CLCD..................................262
CLCD command table...........268
CLCD DIP switch..................267

CLS266, 273, 329
CMODE....................... 279, 329
COLOR........................ 284, 329

CON137
constant arrays....................138
Constants............................137
Contact A............................. 73
Contact B............................. 73
CONTRAST.................. 275, 329
Cos.....................................156

COUNTRESET 178, 329
CSG Dip switch292
CSG module291
CSGDEC..............................294
CSGHEX..............................294
CSGNPUT............................293
CSGXPUT294
Csroff266
CSROFF273
Csron..................................266
CSRON273

 353

CTD..................................... 95

DEBUG........................180, 330

DWADD 106

EXP156
express binary and hexadecimal

.......................................100

FABS157
FLOAT158

GETA.......................... 197, 331

GOSUB198

CTU..................................... 95
CUBLOC Forum................... 23
CUBLOC I/O ports 203
CUBLOC STUDIO................... 48

Ｄ

data memory space............. 133
DCD179, 330

dec.................................... 158
declare the device 77
DECR..........................183, 330
DEFCHR285, 330
DELAY.........................184, 330
DF 88
DFN..................................... 88
DIM 129
DO...LOOP.......................... 185
DOTSIZE.....................284, 330
Double Word size 99
DOWN Counter 95
DP..................................... 159
DPRINT.............................. 282
DTZERO......................186, 330

DWAND.............................. 111
DWDEC.............................. 105
DWDIV 108
DWINC 105
DWMOV 101
DWMUL.............................. 107
DWOR................................ 109
DWROL.............................. 112
DWROR.............................. 113
DWSUB.............................. 106
DWXCHG 102
DWXOR.............................. 110

Ｅ

EADIN 188, 330
EEPROM...................... 190, 300
EEREAD...................... 187, 330
EEWRITE 190, 330
EKEYPAD 191, 330
ELFILL281
ELLIPSE...................... 281, 331

Ｆ

FLOOR................................157
FMOV103
FONT.......................... 277, 331
FOR…NEXT192
FREQOUT.................... 193, 331
function code.......................310
Function Relays73

Ｇ

GET............................ 195, 331

GETSTR 196, 331
GHB3224............................270
GHB3224 DIP Switch290
GHLCD270
GLAYER 275, 331
GLOCATE.................... 281, 331
GMOV.................................104

GOTO 114, 198
GPASTE 288, 331
GPOP.......................... 287, 331
GPRINT...............................282

 354

HIGH199, 332

Long...................................129

Memadr152

MODBUS.............................327

multi-tasking 20

GPUSH........................287, 331

Ｈ

hex.................................... 158

HIGH-Z 203
HP 159
HPaste 289
HPOP289, 332
HPUSH........................289, 332
Hyperbolic Cos.................... 156
Hyperbolic Sin..................... 156
Hyperbolic Tan.................... 156

Ｉ

I2C.................................... 299
I2CREAD.....................201, 332
I2CSTART....................200, 332
I2CSTOP 200
I2CWRITE201, 332
If…Then…Elseif...Else…EndIf 202
IN...............................203, 332
INCR...........................204, 332
INPUT205, 332
Int..................................... 213
Integer............................... 129
Internal Relay 74
interrupt............................. 150
INTON................................ 116

Ｋ

KCTD 97
KCTU 97
KEYIN206, 332
KEYINH.......................206, 332
KEYPAD.......................207, 332
KTAON................................. 93
KTON................................... 93

Ｌ

Label198
LABEL.................................114
LADDER LOGIC................18, 56
LADDERSCAN.............. 208, 333
LAYER......................... 274, 333
LCD displays......................... 27
left159
LEN160
LIGHT......................... 276, 333
LINE 279, 333
LINESTYLE 284, 333
LINETO....................... 279, 333
Ln156
LOAD................................... 85
LOADN................................. 85
LOCATE 266, 273
LOG....................................156
LOG10156

LOW........................... 209, 333
LTRIM.................................160

Ｍ

MCS 89
MCSCLR............................... 89

MEMADR..................... 210, 333
MENUCHECK333
MENUREVERSE....................333
MENUSET............................333
MENUTITLE333
MID....................................160

monitoring 64

 355

ON TIMER218, 334

Ｐ

PEEK...........................224, 334
PLC Setup Wizard.................. 68

PULSOUT225, 335

PUTSTR.......................227, 335

re-flashed75

REVERSE 232, 335

RSTOUT................................87

RTU............. 318, 319, 320, 321

Ｓ

SBRT..................................115

SETOUT................................87

Sharing Data.......................153
SHIFTIN...................... 253, 337

Ｎ

NCD............................211, 334
Nop212, 334
Normally Closed.................... 73
Normally Open...................... 73
NOT..................................... 86

Ｏ

OFFSET.......................283, 334
ON INT213, 334
ON LADDERINT............214, 334
ON PAD.......................216, 334
ON RECV.....................217, 334

OPENCOM219, 334
operators 140
OR....................................... 86
OUT............................221, 334
OUTPUT222, 334
OUTSTAT223, 334
OVERLAY.....................275, 334

PAINT285, 334
PAUSE223, 334
Peek 152

Poke 152
POKE224, 335
PRINT266, 274, 335
PSET...........................284, 335

PUT226, 335
PUTA228, 335

PWM...........................229, 335
PWMOFF230, 335

Ｒ

RAMCLEAR...........133, 231, 335

Relay Expression71
Relay numbers76
representation of numbers....143
RET115
RETURN..............................198

right159
RND233

RTRIM160

Select..Case234
SET DEBUG................. 235, 336
SET DISPLAY............... 263, 335
SET I2C 238, 336
SET INTx 246, 336
SET LADDER On 239, 336
Set Modbus................. 240, 336
SET ONGLOBAL 247, 336
SET ONINTx................ 248, 336
SET ONLADDERINT...... 249, 336
SET ONPAD................. 250, 336
SET ONRECV............... 251, 336
SET ONTIMER.............. 252, 336
SET PAD 241, 336
Set Rs232................... 244, 336
SET UNTIL 245, 336

Seven Segment display28

SHIFTOUT................... 254, 337
Sin156
Single.................................129

 356

STEPOUT.............................. 92

String 130

STYLE278, 337

TAON................................... 93
TCP...................................... 23

Time Chart Monitoring 65

UP Counter........................... 95

Ｖ

WATCH POINT...................... 66

WXOR.................................110

XPORT 23

special relays...................... 117
SQR................................... 156
step control 91

STEPSET 91

STRING(............................. 160

SYS255, 337

Ｔ

TADIN................. 165, 256, 337
Tan.................................... 156
TAOFF.................................. 94

Text Editor 50
text layer size 271
TIME.................................. 337

TIMESET 337
TOFF.................................... 94
TON..................................... 93
Turbo Scan Time................... 79

Ｕ

UDELAY.......................257, 337
UDP..................................... 23

UP/DOWN Counter 96

Usepin 75, 258, 338
UTMAX........................ 259, 338

VAL161
VALSNG..............................161
VAR....................................129

Ｗ

WADD.................................106
WAITTX 260, 338
WAND.................................111

WDEC.................................105
WDIV..................................108
WINC..................................105
WMODE338
WMOV101
WMUL.................................107
WOR...................................109
WROL112
WROR.................................113
WSUB.................................106
WXCHG...............................102

Ｘ

	Chapter 1 �CUSB�Getting started…
	What is CUSB?
	CUSB Specifications
	Ladder Logic and BASIC
	Multi-tasking of Ladder Logic and BASIC
	Development Environment
	Download and Monitoring�through the Internet
	Hints for traditional PLC User
	Hints for Microcontroller User
	CUSB’s Internal Structure
	Peripherals

	Chapter 2 �Hardware
	CUSB-22D Close-up
	CUSB-22R Close-up
	CUSB-30R Close-up
	CUSB-22R I/O MAP &� Dimensions
	CUSB-30R I/O MAP &� Dimensions

	Chapter 3 �CUSB �Wiring
	Connecting Power to CUSB-�22R,30R, and 36R
	Connecting Power to CUSB-22D
	Keypad Controller Connection
	Comfile LCD Connection
	CUSB Digital Input Schematic
	Connecting an NPN �Proximity�Sensor
	Connecting an PNP �Proximity�Sensor
	CUSB Digital (Relay) �Output Schematic
	CUSB Digital Input/Output Test
	CUSB Analog Input Schematic

	Chapter 4 �CublocStudio Editor/�Compiler
	CUBLOC STUDIO Basics
	Creating BASIC
	Debugging
	Menus

	Chapter 5 �Ladder Logic
	LADDER Basics
	Creating LADDER
	Editing LADDER Text
	Monitoring
	Time Chart Monitoring
	WATCH POINT
	Register Expression
	Ladder symbols
	Using I/Os
	Use of Aliases
	Beginning of LADDER
	Declare devices to use
	To Use Ladder Only, �without BASIC
	Enable Turbo Scan Time Mode
	Things to Remember in LADDER
	ladder instructions
	LOAD,LOADN,OUT
	NOT, AND,OR
	SETOUT, RSTOUT
	DIFU, DIFD
	MCS, MCSCLR
	STEPSET
	STEPOUT
	TON, TAON
	TOFF, TAOFF
	CTU
	CTD
	UP/DOWN COUNTER
	KCTU
	KCTD
	Comparison Logic
	How to store �Words and Double Words
	Binary, Decimal, Hexadecimal
	WMOV, DWMOV
	WXCHG, DWXCHG
	FMOV
	GMOV
	WINC, DWINC, WDEC, DWDEC
	WADD, DWADD
	WSUB, DWSUB
	WMUL, DWMUL
	WDIV, DWDIV
	WOR, DWOR
	WXOR, DWXOR
	WAND, DWAND
	WROL, DWROL
	WROR, DWROR
	GOTO, LABEL
	CALLS, SBRT, RET
	INTON
	Special Registers

	Chapter 6 �CUBLOC �BASIC Language
	CUBLOC BASIC Features
	Simple BASIC program
	Sub and Function
	Variables
	String
	About Variable Memory Space
	Arrays
	Bits and Bytes modifiers
	Constants
	Constant Arrays...
	Operators
	Expressing Numbers in Bits
	The BASIC Preprocessor
	Conditional
	To use LADDER ONLY
	To use BASIC ONLY
	Interrupt
	More about Interrupts…
	Pointers using Peek, Poke, �and Memadr
	Sharing Data

	Chapter 7 �CUBLOC �BASIC functions
	Math Functions
	Type Conversion
	String Functions

	Chapter 8 �CUBLOC BASIC Statements�& Library
	Adin()
	Alias
	Bcd2bin
	Bclr
	Beep
	Bfree()
	Bin2bcd
	Blen()
	Bytein()
	Byteout
	CheckBf()
	Count()
	Countreset
	Dcd
	Debug
	Decr
	Delay
	Do...Loop
	Dtzero
	Eeread()
	EAdin()
	Eewrite
	Ekeypad
	For...Next
	Freqout
	Get()
	Getstr()
	Geta
	Gosub..Return
	Goto
	High
	I2Cstart
	I2Cstop
	I2Cread()
	I2Cwrite()
	If..Then..Elseif…Endif
	In()
	Incr
	Input
	Keyin
	Keyinh
	Keypad
	Ladderscan
	Low
	Memadr()
	Ncd
	Nop
	On Int
	On Ladderint Gosub
	On Pad Gosub
	On Recv1
	On Timer()
	Opencom
	Out
	Output
	Outstat()
	Pause
	Peek()
	Poke
	Pulsout
	Put
	Putstr
	Puta
	Pwm
	Pwmoff
	Ramclear
	Reverse
	Rnd()
	Select...Case
	Set Debug
	Debug Command How-to
	Set I2c
	Set Ladder on/off
	Set Modbus
	Set Pad
	Set Rs232
	Set Until
	Set Int
	Set Onglobal
	Set Onint
	Set OnLadderint
	Set Onpad
	Set Onrecv
	Set Ontimer
	Shiftin()
	Shiftout
	Sys()
	Tadin()
	Udelay
	Usepin
	Utmax
	WaitTx

	Chapter 9 �CUBLOC�Display Library
	Cls
	Csron
	Csroff
	Locate
	Print
	CLCD Module
	GHLCD Graphic LCD :�GHB3224 Series
	Cls
	Clear
	Csron
	Csroff
	Locate
	Print
	Layer
	GLayer
	Overlay
	Contrast
	Light
	Font
	Style
	Cmode
	Line
	Lineto
	Box
	Boxclear
	Boxfill
	Circle
	Circlefill
	Ellipse
	Elfill
	Glocate
	Gprint
	Dprint
	Offset
	Pset
	Color
	Linestyle
	Dotsize
	Paint
	Arc
	Defchr
	Bmp
	Gpush
	Gpop
	Gpaste
	Hpush
	Hpop
	Hpaste
	Seven Segment Display :�CSG Series
	Csgdec
	Csgnput
	Csgxput
	Csgdec
	Csghex

	Chapter 10 �Interface
	CuNET
	About I2C…
	More About I²C… (Advanced)

	Chapter 11 �MODBUS
	About MODBUS…
	Error Check
	MODBUS ASCII Master Mode
	MODBUS ASCII Slave Mode
	MODBUS RTU Master Mode
	MODBUS RTU Slave Mode

	APPENDIX
	Appendix A. ASCII CODE
	Appendix B.�CUBLOC BASIC Command �summary
	Appendix C. MODBUS RTU�Include Files

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [360.000 576.000]
>> setpagedevice

