

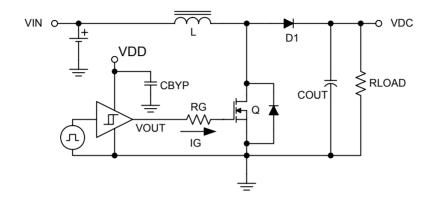
Low-Side MOSFET Drivers Application and Lab Evaluation

the **puwer** franchise

Mark Dennis Staff Engineer

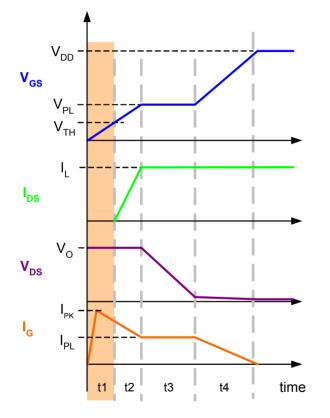
www.fairchildsemi.com

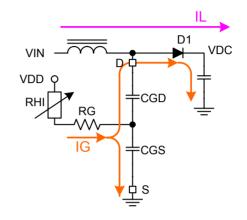
- Overview of low-side driver applications
 - Clamped Inductive switching
 - Synchronous rectifier switching
 - Transformer drive applications
- Discrete and integrated driver solutions
- Driver datasheet current ratings
- Techniques for evaluating driver current capability in the lab


the

- Direct low-side driver in PWM controller
 - PWM output in low to mid power applications (100 to 200W)
 - Flyback, boost, forward applications
- When is PWM onboard driver acceptable?
 - MOSFET switching times provide acceptable efficiency
 - Control circuit not disrupted by noise
 - Heat dissipation is within acceptable limits
- When are external drivers needed?
 - Higher power requires more current capability
 - Need translation from logic levels to higher gate drive voltage
 - IGBTs need high voltage drive (>15V)
 - Grounding, noise and heat issues affect operation
 - Application requires driving gate or pulse transformers

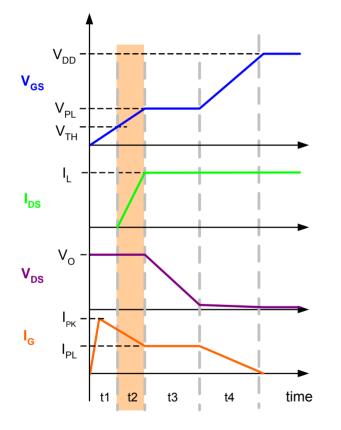
Examine Boost with Clamped Inductive Load

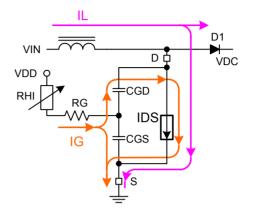

- Non-isolated boost stage
- Illustrates clamped inductive load switching
- Inductor L is large, constant current during switching intervals
- Switching intervals are examined in following slides as in [1], [2]
- Allow user to estimate I_G requirements



the

MOSFET Turn on in Interval t1




- Initially MOSFET is off, $V_{DS} = V_{OUT}$
- I_G charges C_{GS}||C_{GD} to V_{TH}
- I_G amplitude is limited by
 - driver output current capability
 - external resistance
 - parasitic inductance

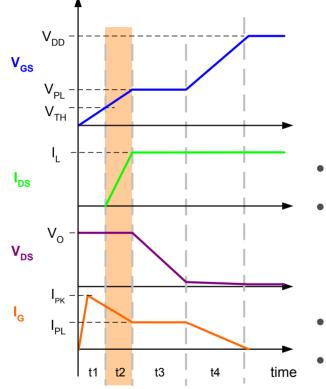
MOSFET Turn on Interval t2

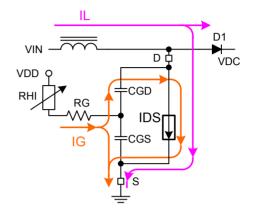
• V_{TH} is exceeded and MOSFET starts conducting in linear mode:

$$I_D = g_m (V_{gs} - V_{TH})$$

- I_{DS} rises in MOSFET channel from 0 to I_L
- During t2 C_{GD} and C_{GS} are charged to a level:

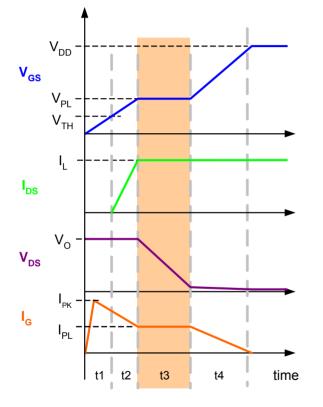
the

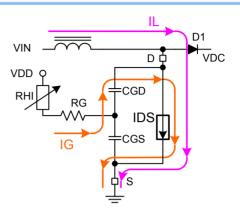

tra


nchise

$$V_{PL} = \frac{I_L}{g_m} + V_{TH}$$

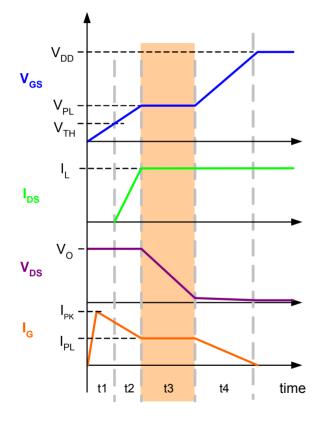
What is the Length of Interval t2?

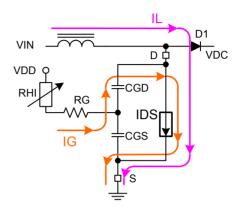

- I_{DS} rises in MOSFET channel from 0 to I_{L}
- t2 interval length can be defined as


$$t2 = T_{IDS,rise} = \frac{Q_{gs2}}{I_G}$$

- Q_{GS2} specified by MOSFET datasheet
- I_G is the current delivered during t2

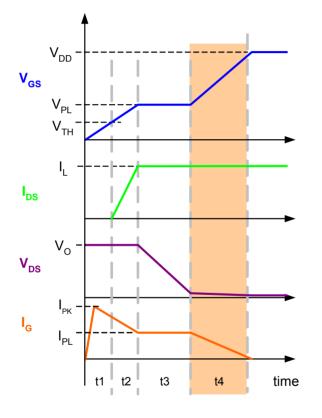
Interval t3 – Known as "Miller" region

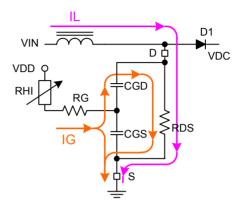



- I_G flows through C_{GD} while V_{GS} remains at V_{PL}
- MOSFET conducts full I_L while V_{DS} falls from V_{DC} toward GND
- How can we determine driver current capability (Amps) required?

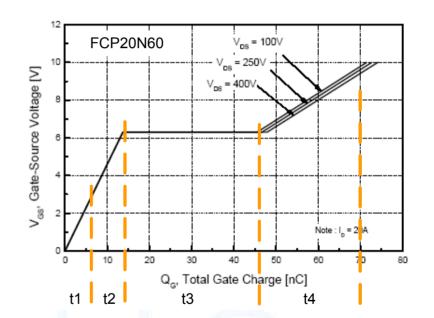
What is the Length of Interval t3?

• t3 interval approximated by

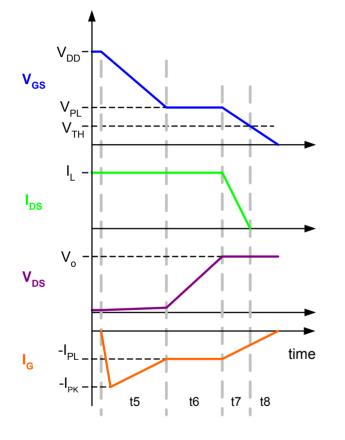

$$t3 = T_{vds,f} = \frac{Q_{GD}}{I_G}$$


- Q_{GD} derived from MOSFET datasheet
- I_G is a function of
 - driver current source capability
 - external impedances

MOSFET Turn on Interval t4

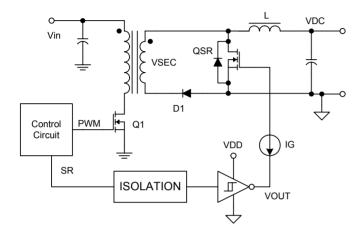


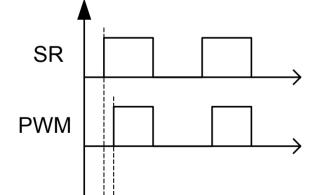
- V_{GS} rises from V_{PL} to V_{DD}
- I_G charges $C_{GD}||C_{GS}$
- R_{DS} reaches low value


- $t1 V_{GS}$ reaches V_{TH} (3V)
- $t2 V_{GS}$ reaches V_{PL} (6.2V)
- t3 Q_{GD} delivered as V_{DS} swings low (32 nC)
- $t4 V_{GS}$ enhanced to 9.5V with $Q_{G,T} = 70 \text{ nC}$
- Average current from V_{DD} is $I_{DD} = Q_G \ge f_{SW}$

Boost Turn off waveforms

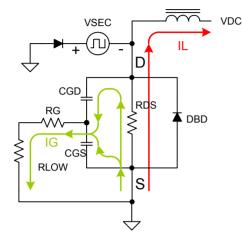
- Turn off proceeds in reverse order from turn on
- t5 V_{GS} discharges to V_{PL}
- $t6 I_G$ constant as V_{DS} rises
- $t7 V_{GS}$ decrease reduces I_{DS}

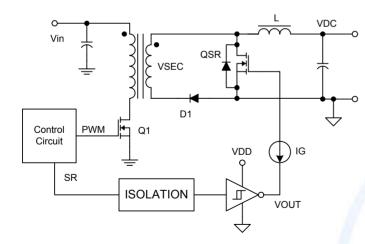

the


tranchise

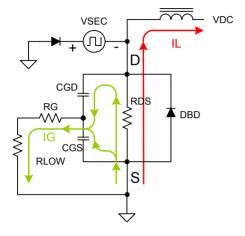
• $t8 - V_{GS}$ is discharged to 0V

Forward Converter with Secondary Sync. Rectifier




- Simplified forward converter with freewheel diode replaced by Q_{SR}
- Q_{SR} conducts when Q1 is off
- Q_{SR} must turn off before Q1 turns on
- SR signal leads PWM as indicated
- SR signal generation
 - primary controller
 - external timing circuitry

SR MOSFET Turn off operation

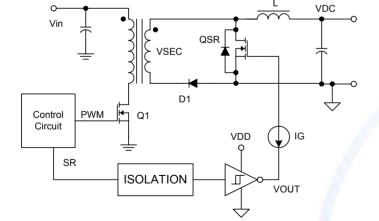

- Initially, inductor current flows through MOSFET channel R_{DS}
- Driver output goes low and sinks current I_G shown
- In many applications there is no external resistor between driver and MOSFET
- How can we determine driver current capability (Amps) required?

the

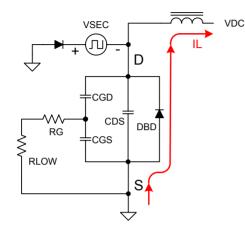
tra

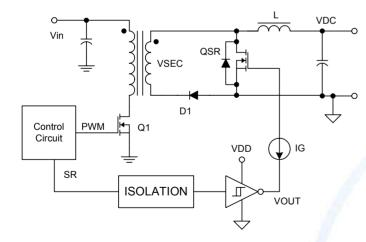
What Driver is Needed for SR MOSFET?

 Turn-off time can be estimated using Q_{Q,SR} as determined in [3]

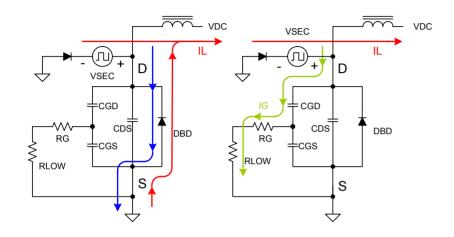

$$t_{off} = \frac{Q_{Q,SR}}{I_G}$$

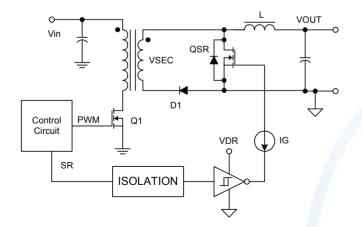
With
$$Q_{Q,SR} = (C_{GS} + C_{GD,SR}) \cdot V_{DRV}$$


$$C_{GD,SR} = 2 \cdot C_{RSS,SPEC} \cdot \sqrt{\frac{V_{DS,SPEC}}{0.5 \cdot V_{DRV}}}$$
$$C_{GS} = C_{ISS} - C_{RSS}$$


- C_{ISS} and C_{RSS} found on datasheet curves, C_{GS} approximately constant
- What value should be used for I_G?

- With MOSFET OFF, I_L flows through body diode D_{BD}
- This current flow is determined by external circuit, not MOSFET gate-source voltage


the


tranchise

• No gate current flows

SR MOSFET dV/dT interval

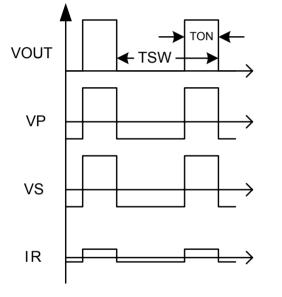
- V_{SEC} polarity switches as shown with V_{SEC} (-) clamped by diode
- This forces reverse recovery current (blue) through body diode and I_L transfers to V_{SEC} (left)
- After D_{BD} recovers V_{DS} rises
- With no current in C_{GS}, driver sinks current (right)

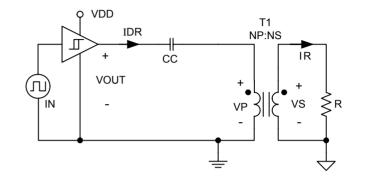
the

Tra

nchise

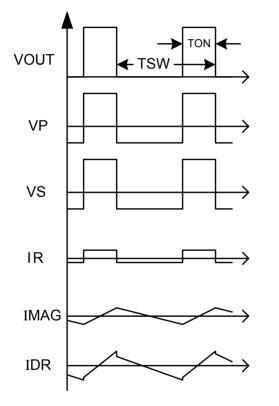
$$I_G = C_{GD} \cdot \left(\frac{dV_{DS}}{dT}\right)$$

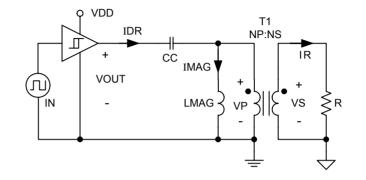

www.fairchildsemi.com



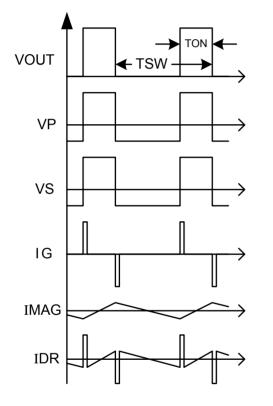
- Gate drive transformer applications
 - Higher power converters often have high/low switches
 - High voltage or primary-secondary isolation may be needed
 - Short propagation delays resulting from small leakage inductance improves protection [4]
 - Competition: half-bridge gate drive ICs
- Pulse transformers used for communication
 - communication needed for enhanced performance
 - competition: high speed opto-isolators with digital outputs
- These two applications can look similar

Pulse Transformer With Resistive Load




- V_{OUT} has DC voltage component
- Transformer cannot support DC voltage
- C_c blocks DC voltage but passes AC
- C_C selected with ripple voltage <<V_{OUT} while passing I_{DR}
- With Np=Ns, V_P and V_S are centered at 0V and amplitudes change with duty cycle
- Positive Volt-sec = negative Volt-sec

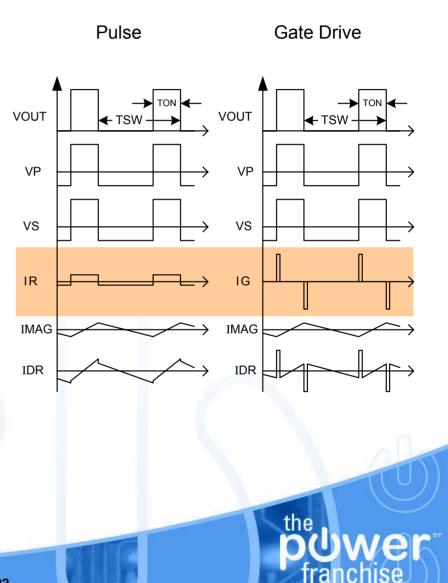
Pulse Transformer With Resistive Load-2



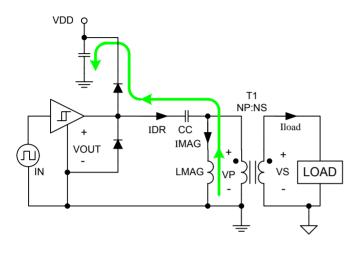

- Transformer is replaced by magnetizing inductance in parallel with ideal transformer
- I_{DR} is equal to magnetizing current I_{MAG} plus reflected resistive current I_R
- I_{MAG} is defined by L_{MAG}, voltage, and time (not load)

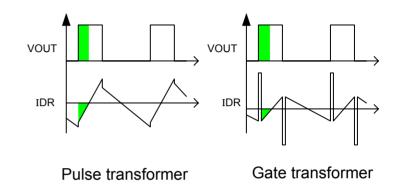
Change to MOSFET Gate Drive Application

the

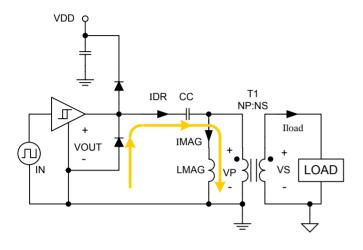

franchise

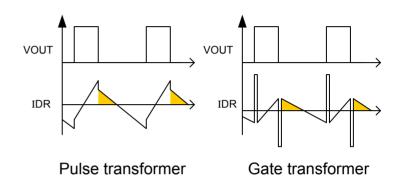
21




- For these applications $V_{\text{OUT}},\,V_{\text{P}},\,V_{\text{S}},\,$ and I_{MAG} are the same
- I_R and I_G are very different
- Winding DC resistance (DCR) should be checked for voltage drop and losses
- Same transformer often works in either circuit
- Transformer E-T Product (V-us) calculated on secondary side

Driver Reverse Current - V_{OUT} High

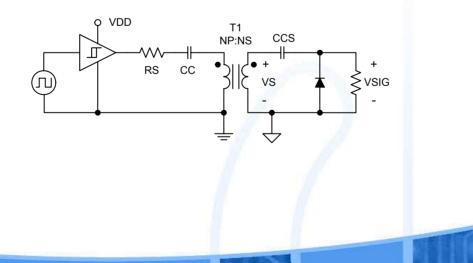

the


tra

- Before V_{OUT} goes HIGH, I_{MAG} is negative and driver sinks current
- When V_{OUT} goes HIGH driver must continue to sink current
- Bipolar drivers need external diodes, MOSFET drivers can conduct reverse current through channel, body diode

Driver Reverse Current Vout - Low

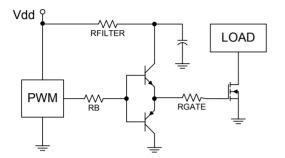
the

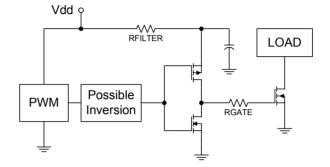

tra

- Before V_{OUT} goes LOW, I_{MAG} is positive and driver sources current
- When V_{OUT} goes LOW driver must continue to source current
- Bipolar drivers need external diodes, MOSFET drivers can conduct reverse current through channel, body diode

- In initial pulse transformer circuit $V_{\rm S}$ is related to $V_{\rm DD}$ by turns ratio, and varies with duty cycle
- C_{CS} and D clamp V_{SIG} with GND reference
- C_C and L_{MAG} undergo startup transient
- Series R_S can be selected to provide critical damping

$$R_{S} = 2 \cdot \sqrt{\frac{L_{MAG}}{C_{C}}}$$


the

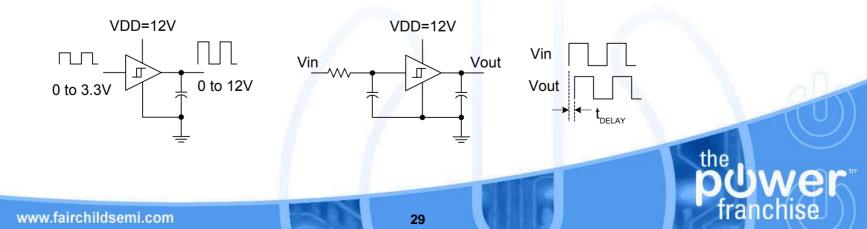


- Discrete designs built from bipolar or MOSFET devices
- Integrated circuit devices using bipolar, MOSFET, or compound (combined) device technologies
- All driver applications benefit from:
 - Local bypass capacitor
 - filtering from control circuit Vdd
 - location close to load
 - capability to dissipate power

Discrete Driver Configurations

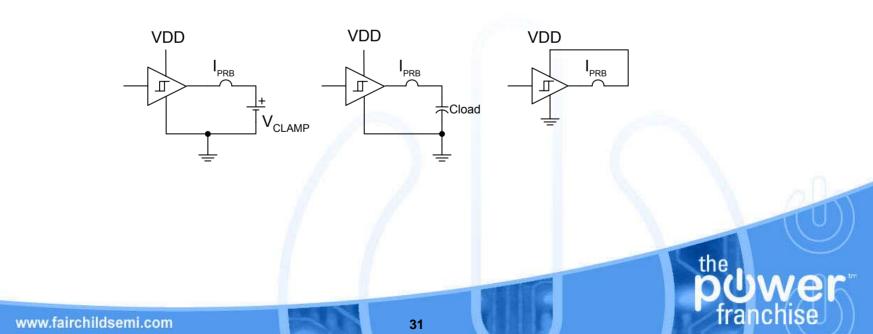
the

- NPN/PNP emitter follower
 - Non-inverting configuration works directly in phase with control chip
 - No shoot-thru, devices not on simultaneously
 - Output has no ohmic connection to rails
- PMOS/NMOS driver (inverter)
 - Natural inversion requires additional inversion to follow control
 - Overlap in V_{GS} conduction range leads to shoot-thru
 - Rail to rail operation

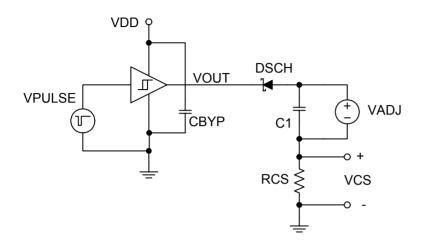


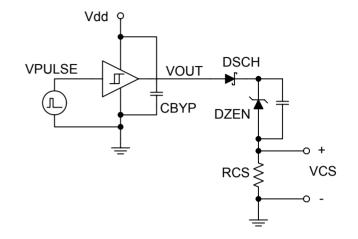
- More individual devices needed in circuit
 - assembly and test time grow
 - more reliability concerns
- Translation from logic level inputs to higher voltage drive levels adds complexity
- For fast switching, input driving signal needs fast edges (output not fully buffered from input)
- Difficult to introducing delay through drive stage while keeping fast edge rates
- MOS shoot-thru power loss increases with frequency

- Integrated features can reduce supporting circuitry
 - enable functions can simplify control in SR applications
 - UVLO can provide orderly startup in secondary side circuits
- Facilitates direct translation from TTL inputs to higher V_{GS}
- High impedance inputs with CMOS thresholds facilitate programming time delay in driver (HIGH = $2/3 V_{DD}$, LOW = $1/3 V_{DD}$)
- Device input current usually negligible
- Small MLP packages enable highest density designs
 - dual 2 A, 4 A drivers in 3x3 mm ; single 2 A in 2x2 mm
 - thermal pads allow reduced thermal impedance
- Summary: Less component level design required from users

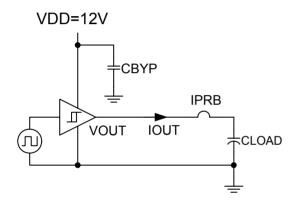


- Many users treat drivers as near-ideal signal amplifiers
- Some assumptions may not be justified:
 - Sink and source current defined by series resistances
 - Output slew rates are instantaneous
- Output current varies with V_{DD}, parasitic impedances, size of external load, temperature, other factors
- Output rise/fall specifications don't give much insight into instantaneous current capability




- Current specified in one of several ways
 - Peak current available from driver
 - Current available with output at clamped voltage level
 - Current available through low value resistance (or short circuit)
 - Measure current with current probe bandwidth, inductance concerns
- All driver measurements require attention to detail!

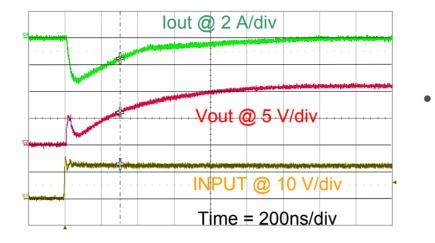
Clamped Circuits for Pulsed Testing

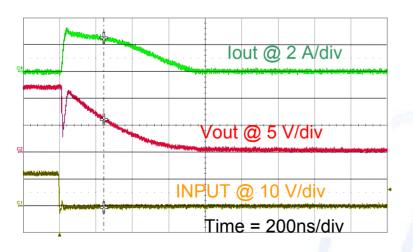

the

tra

nchise

- These circuits test current capability for pulses of 200ns with <u>minimal</u> external resistance (R_{CS} is 0.05 Ω)
- With good layout, transient dies out < 100ns
- V_{PULSE} is 200ns pulse at low duty cycle, 2%
- At left I_{SINK} is monitored as V_{CS} goes negative
- On right I_{SOURCE} is monitored as V_{CS} is positive

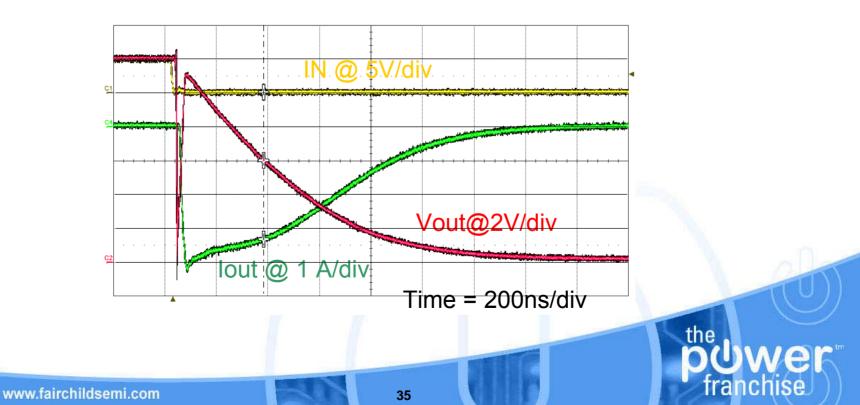

- I_{PRB} monitors I_{OUT} charging or discharging a large capacitor
- C_{LOAD} chosen as 100x capacitor used in rise/fall time specs
 - 2 Amp 100 x 1nF = 0.1uF
 - 4 Amp 100 x 2.2nF = 0.22uF
- This allows measurement of I_{OUT} at various values of V_{OUT}
- This is maximum current available from driver with <u>NO</u> external resistance
- This equates to the pulse current values obtained in clamped sink and source circuits


the

Look at 2 Amp Drivers with Large Load

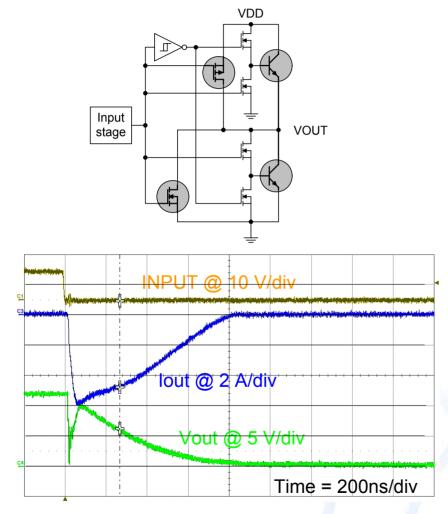
- Top picture FAN3227C I_{SOURCE}
 - Approximately 3 Amps I_{OUT,peak}
 - I_{SOURCE} = 1.5 Amps @ 6V_{OUT}

- Bottom picture FAN3227C ISINK
 - Approximately 3 Amps I_{OUT,peak}


the

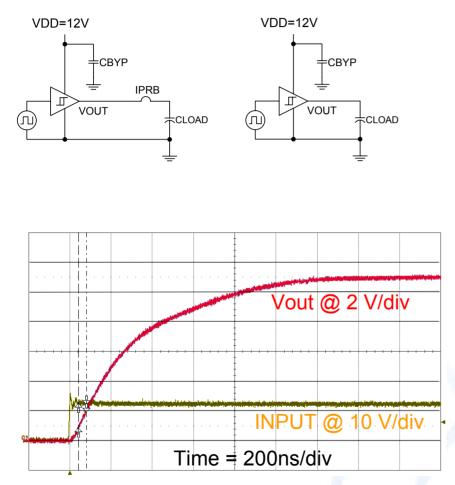
tranchise

- I_{SINK} = 2 Amps @ 6V_{OUT}
- Note initial transient due to current loop inductance (<100ns)



- MOS-based drivers spec peak current and R_{DS,high} or R_{DS,low}
- The R_{DS, on} values not achieved during early stages of turn on
- Peak current is significantly less than I=V_{DD}/R_{DS}
- In examples tested, datasheet current rating is peak current available from device

Integrated Driver with Compound Output Stage



- Compound output stage
 combines bipolar and MOSFET
- Bipolars provide current during mid range of V_{OUT} and clamp V_{OUT} within 1 volt of rails
- MOSFETs pull V_{OUT} to rails and offers bi-directional current capability
- FAN3224C shows 6 Amp I_{SINK,pk}
- FAN3224C sinks 4.5 Amps at V_{OUT} = 6V (datasheet says 4 Amp driver)

Now Remove Current Probe

- I_{PRB} requires wire loop for current probe
- C_{LOAD} is surface mount 0.1uF, (0805) with minimal inductance
- Note lack of initial transient!
- Calculate current from familiar equation applied over short, approximately linear interval.

$$I = C_{LOAD} \cdot \left(\frac{dV_{OUT}}{dT}\right)$$
$$I = 0.1\mu F \cdot \left(\frac{1.131V}{40.6ns}\right) = 2.8A$$

the

tranchise

- Key low-side driver applications include
 - ground referenced switches
 - SR applications
 - pulse and gate drive transformer applications
- Potential drivers include integrated and discrete
 - PMOS-NMOS drivers
 - bipolar drivers
 - compound drivers which combine bipolar and MOSFET
- Lab evaluation of drivers current capability
 - presented progression of pulse and "large load" circuits
 - correlated lab data provide confidence in results

- [1] 2006 Fairchild Power Seminar Topic, "Understanding Modern Power MOSFETs," http://www.fairchildsemi.com/powerseminar/pdf/understanding_modern_power_mOSFETs.pdf
- [2] Oh, K. S., "MOSFET Basics", July, 2000, available as AN9010 from the fairchildsemi.com webite
- [3] Balogh, L. "Design and Application Guide for High Speed MOSFET Gate Drive Circuits," Power Supply

Design Seminar SEM-1400, Topic 2, Texas Instruments Literature No. SLUP169

- [4] ICE Components Gate Drive Transformer Datasheet "GT03.pdf" dated 10/06, available from www.icecomponents.com
- [5] 2006 Fairchild Power Seminar Topic, "Practical Power Application Issues for High Power Systems,"

http://www.fairchildsemi.com/powerseminar/pdf/practical_power_high_power_systems.pdf

[6] Johnson, H. Dr, "High-Speed Digital Design On-Line Newsletter," Vol. 3 Issue 8,

www.sigcon.com/Pubs/news/3_8.htm