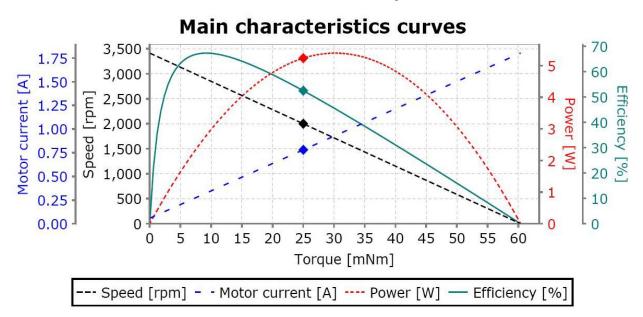


DC Motor Selection George Hunt


Agenda

- Simplicity: The linear characteristics of Motors
 - Iron core brushed dc motors
 - Coreless brushed dc motors
- Going for longevity: Brushless technology
 - Driving brushless motors
- Positioning with PMDC steppers
 - Driving Steppers
- Linear motion with actuators
- Feedback
- About MICROMO
- Contact Information

Linearity

- Voltage and Speed
 - ✓ Directly proportional
- Current and Torque
 - ✓ Directly proportional

Linearity

$$P_{rot} = M \times \omega$$

$$P_{dis} = I^2 \times R$$

Iron core DC motor

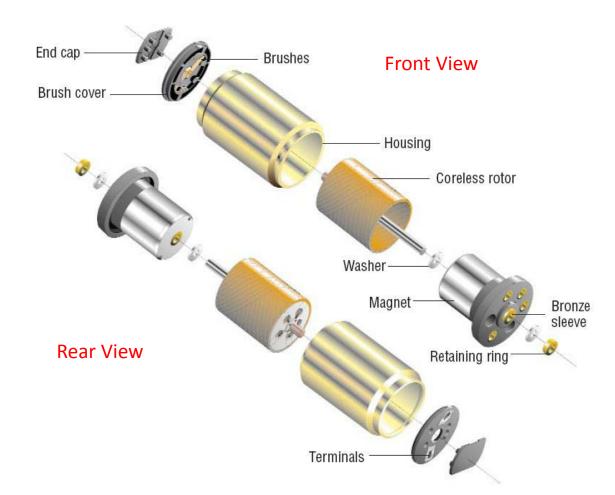
- Iron core DC motors with copper graphite brushes
 - Powerful
 - High torque
 - Rigid design
- Downside to Iron Core
 - Poor acceleration
 - High inductance
 - Cogging and arcing

Coreless DC motor

- Coreless DC motors with carbon graphite brushes
 - High speed / faster acceleration
 - No cogging
 - Reduced arcing
 - Long life
 - High current density
 - High torque constant

Coreless DC motor

- Coreless motors with precious metal brushes
 - High speed / faster acceleration
 - No cogging
 - Reduced arcing
 - Low mechanical sliding friction between brush and commutator
 - Can be driven at low voltages and low speeds
 - Long life and smoother commutation signal
 - Great for aerospace applications



Coreless DC motor

- Coreless motor construction
 - Precious metal commutation shown here
 - Self-supporting skewed windings
 - Sleeve bearings shown here

Brushless DC motor

- Brushless DC motors
 - Capable of very high speeds
 - Lower EMI than most brushed
 - Very long life when driven properly
 - No mechanical commutation, no arcing!
 - Different varieties: 2 pole / 4 pole / 8 pole

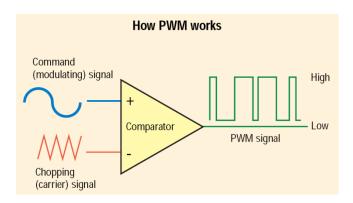
Brushless DC motor

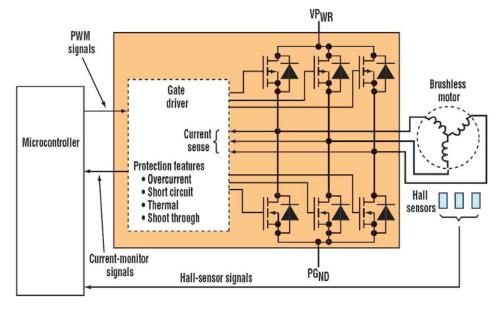
Construction

Opposite of brushed motors

Rotor magnet, windings on stator

Integrated drive electronics shown here



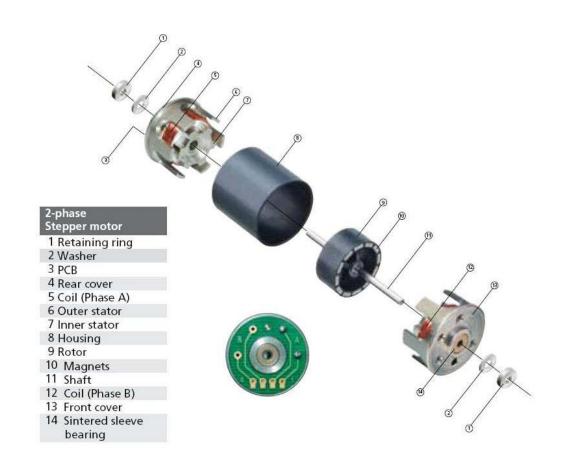


Brushless DC motor

- BLDC motors must be driven with a 3 phase power signal
 - PWM or pulse width modulation
 - PWM is more efficient than linear voltage
 - Power stage delivered by 6
 MOSFETs
 - Hall sensor feedback

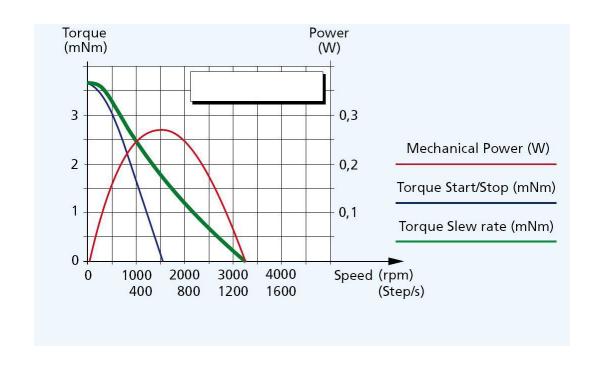
Stepper Motors

- 2-phase stepper motors with neodymium magnets
 - Steppers are simple and reliable
 - Micro-stepping capabilities
 - Great for positioning (cameras)
 - Open loop so no need for feedback (cost savings)
 - Excellent holding torque (no power-off brakes needed)



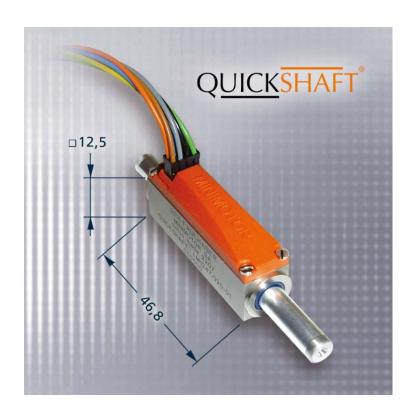
Stepper Motors

- Stepper Construction
 - Brushless
 - Usually 12 pole pairs
 - 2 phase shown here



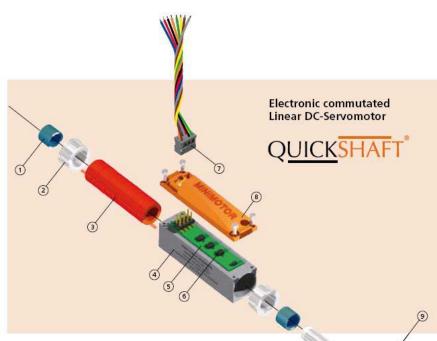
Stepper Motors

- Driving a stepper
 - Start and stop region
 - instantaneous
 - Pull out curve
 - Must be ramped



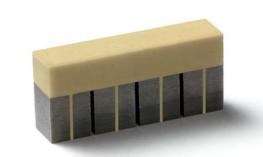
Linear Motors

- Direct drive linear actuation
 - Linear servo motors
 - Excellent acceleration
 - High resolution
 - Excellent repeatability
 - High precision
 - High efficiency



Linear Motors

- Brushless linear servo motors
 - Construction
 - Drive rod contains magnets
 - Linear halls for positioning
 - Sleeve bearings



Linear Motors

New technology enables OEMs to develop new solutions for today's market:

- The Application: Microscope stages for drug discovery, cell manipulation, DNA testing
 - Piezoelectric actuators
 - Nano-positioning resolution!
 - No E/M emissions
 - Back-drivable without harm
 - Backlash free
 - Simple drive electronics
 - Rotary and linear versions
 - Vacuum compatible
 - Non-magnetic versions

Feedback

FAULHABER GROUP
We create motion

- Optical Encoders
 - 1024 lines per revolution direct read
 - Modular and replaceable
- Magnetic Encoders
 - Fits on small motors
 - Cost effective solution
- Digital Hall effects
 - Commutation and feedback all in one
 - Fine for speeds > 1000 RPM
 - Noise immunity
- Linear Hall effects
 - Commutation / Feedback
 - Positioning capabilities
 - Susceptible to noise

Who Is MICROMO?

MICROMO, founded in 1962 and based in Florida, represents FAULHABER products in the Americas. A member of the FAULHABER Group, MICROMO is a leader in miniature motor and encoder technology and design customization.

MICROMO brings together value-added services and cutting-edge technologies from around the world through high-efficiency, high-performance offerings such as brushed, brushless, stepper, thin-profile DC and piezoelectric motors for diverse applications.

Our benchmark contributions with motion solutions are a part of leading products and applications in markets such as medical devices, optics, photonics, automation, aerospace, defense and security systems.

Contact Information

George R. Hunt

Application and Design Engineer

MICROMO

14881 Evergreen Ave Clearwater, FL 33762-3008 USA

Phone: 800-807-9166

Email: george.hunt@micromo.com

Visit us on the Web at www.MICROMO.com

