
GPS Series - Part 3 By Michael Simpson

Interface to a GPS Module or Receiver

As seen in December 2007 of Servo Magazine
Pick up an issue at

www.servomagazine.com

At this point you should understand how to connect each of the modules to your PC. You
can also use the various applications I have provided to check the connection status. This
month I’m going to show you how to parse the positional data from the NMEA protocol.
I’m also going to present you with a data logger program that will allow you to capture
and store NMEA data on your PC.

More on the NMEA 0183 Protocol

Back in Part 1, we looked at the GSV and GSA NMEA commands. While those
commands are invaluable for determining your GPS lock status, they won’t yield any
positional data. Let’s take a look at two additional commands:

• GGA: Time, Position, Fix Type
• RMC: Time, Date, Position, Course, Speed

Remember you can download a complete NMEA 0183 reference manual here:
http://www.sparkfun.com/datasheets/GPS/NMEA%20Reference%20Manual1.pdf

Just To Recap:
A NMEA 0183 message begins with a $GP and ends with a carriage return. It looks
something like this:

$GPGSV,3,1,12,20,00,000,,10,00,000,,25,00,000,,27,00,000,*79

The message name, which is also referred to as the option, are the characters just
following the $GP. Each data element is separated by a comma. The data elements are
terminated by the * character, followed by the checksum. There is an 8-bit XOR of each

http://www.servomagazine.com
http://www.sparkfun.com/datasheets/GPS/NMEA%20Reference%20Manual1.pdf

character between the $ and * to form the checksum. The last two characters in the
message are a hex representation of the calculated checksum.

GGA: Global Positioning System Fixed Data

Field 1, UTC Time in the format of hhmmss.sss
Field 2, Latitude in the format of ddmm.mmmm
Fields 3, N/S Indicator (N=North, S=South)
Field 4, Longitude in the format of dddmm.mmmm
Field 5, E/W Indicator (E=East, W=West)
Field 6, Position Fix Indicator (0=No Fix, 1=SPS Fix, 2=DGPS Fix)
Field 7, Satellites Used (0-12)
Field 8, Horizontal Dilution of Precision
Field 9, MSL Altitude
Field 10, MSL Units (M=Meters)
Field 11, Geoid Separation
Field 12, Geoid Units (M=Meters)
Field 13, Age of Diff Correction in seconds
Field 14, Diff Reference

RMC: Recommended Minimum Specific GNSS Data

Field 1, UTC Time in the format of hhmmss.sss
Field 2, Status (A=Valid Data, B=Invalid Data)
Field 3, Latitude in the format of ddmm.mmmm
Fields 4, N/S Indicator (N=North, S=South)
Field 5, Longitude in the format of dddmm.mmmm
Field 6, E/W Indicator (E=East, W=West)
Field 7, Speed over ground in knots
Field 8, Course over ground in degrees
Field 9, Date in the format of ddmmyy
Field 10, Magnetic Variation in degrees
Field 11, Mode (A=Autonomous, D=DGPS, E=DR)

Both the GGA and RMC fields will give you the Longitude and Latitude, but only the
GGA will report the Altitude and Fix Type. The RMC command will report your course
and speed. So it’s clear that we need to parse both of these commands to gain all the
information.

Data Logger

To help you understand the GGA and RMC commands a little better, let’s start out by
building a data logger. Data loggers are invaluable because they let you collect test data
that you can later use to help you test and refine your projects without having to resort to
field tests.

As shown in Figure 2 the data logger is straight forward. I have included both PC and
Pocket PC versions that will handle all the modules and receivers discussed in this series.
You select the device using the Device menu shown in Figure 3. This will set the correct
baud rate and enable special setup commands needed for the Etek and Copernicus
modules.

Figure 2

Figure 3

You start the data collection by hitting the start button shown in Figure 4. The program
will then open the com port indicated and initialize the GPS module if needed. Collected
data will be saved to the file indicated. If you want to save the file into the same
directory as the GPSDataLogger program, precede the filename with a decimal point as
shown in Figure 4.

Figure 4

As data is collected and saved, it is also parsed. The NMEA commands GGA, GSV,
GSA and RMC are all parsed. The pertinent information is displayed on the form as
shown in Figure 5. The actual number of bytes captured and saved will also be

displayed. If you see the captured number go up but none of the data fields are updated,
you have selected the wrong device.

Figure 5

Data Plotter

You will want to view the data you collected. I have created two programs to allow you
to do just that. The GPSLogDisplay program shown in Figure 6 will display all the
pertinent information. You select the log file captured with the GPSDataLogger program
by selecting the File Menu as shown in Figure 7.

Figure 6

Figure 7

You have the option of displaying the data as fast as your computer can process the data,
or in real-time by setting the RealTime menu shown in Figure 8. When in real-time, the
data will be processed based on the UTC time stamp in the message. What the program
does is look for differences in the seconds in the UTC field. When it sees a discrepancy
it delays the program for one second.

Figure 8

For actual plotting you can use the program called GPSLogPlot shown in Figure 9. This
program will allow you to plot your actual trip. By default, the program sets the scale to
200. This divides plot points by 200 thus shrinking the plot to fit on the display. You
can change this using the settings menu. When plotting short distances, use a smaller
scale.

Figure 9

When you start the plot, the first valid point becomes the reference starting point that will
be, by default, the center point on the display. You can change this point by changing the
Start x and Start y points in the settings menu. The actual plot area is a 1000 x 1000
grid. You can change the view of this grid by using the small pad on the form shown in
Figure 10. The center button will center the view to its default.

Figure 10

The plots shown in Figure 11 were all captured with the GPSDataLogger and my pocket
PC using the BT359W shown in Figure 12. This is the most accurate GPS I have ever
owned. The main reason I have not showcased it in this series is that it is a Bluetooth
only receiver. You can use the same interface program as the Holux GPSLim236.
Unlike the GPSLim236 the BT359W does supports WAAS.

Figure 11

Figure 12

GPS Parsing Software

While I have included the compiled version of the programs presented in this article, I
have included the source code for those that may want to roll their own. Each of the
programs parses the GGA, RMC, GSV, and GSA NMEA commands. The main NMEA

processor function is called ProcNMEA. This function calls four functions to handle the
parsing of these commands. Each function populates a set of global variables as shown
in Table 1. These variables map to the fields in the NMEA specification. One exception
is the GGA_FIXtxt variable, which contains an actual description of the FIX type.

Function Variable Populated
procGGA GGA_UTCTime

GGA_Latitude
GGA_NS
GGA_Longitude
GGA_EW
GGA_FIX
GGA_FIXtxt
GGA_Sats
GGA_HDOP
GGA_AltValue
GGA_AltUnit
GGA_Sep
GGA_SepUnits
GGA_Age
GGA_Diff

procRMC RMC_UTC

RMC_Status
RMC_Latitude
RMC_NS
RMC_Longitude
RMC_EW
RMC_SOG
RMC_COG
RMC_Date
RMC_Variation
RMC_Mode

procGSV GSV_SATSINVIEW

GSV_NOM
GSV_MSG
GSV_SATIDS(x)
GSV_SATELE(x)
GSV_SATAZ(x)
GSV_SATSNR(x)

When GSV_NOM = GSV_MSG then
all data has been collected. At that
point you should set GSV_NOM = 0

procGSA GSA_SATMODE

GSA_SATCOUNT

Table 1

Take a look at the Dispit function shown in Program Snipit 1. This is the heart of the
GPSLogDisplay program. This function is called when the Start button is pressed. The
function opens the log file you have selected, then enters a processing loop. In each
iteration of the loop, the abort button is checked ann a line of data is retrieved from the
log file. If the end of file is reached or the abort button is hit, the file is closed and the
function exits. Each line retrieved from the log file is passed to the procNMEA function
and only when a GGA message is received does the display get updated.

'------------------------------
'Get and display the data
'------------------------------
func Dispit()

 dim tstr as string
 dim newtime as string
 dim oldgpstime as string

 FormMenu(0,0,0,"")
 FormButton(Disp_Start,-1,-1,-1,-1,"Abort")

 'First Open the File
 if FileOpen(1,gfname,Open) = 0 then
 msgbox("Unable to open file: "+gfname,0,"Open File")
 FormMenu(0,0,1,"")
 FormButton(Disp_Start,-1,-1,-1,-1,"Start")
 exit()
 endif

'==
'----- Main Data Display Loop -------------------------------
loop:

 if FormButton(Disp_Start,0) > 0 then
 FileClose(1)
 FormMenu(0,0,1,"")
 FormButton(Disp_Start,-1,-1,-1,-1,"Start")
 exit()
 endif

 if FileEOF(1) = 1 then
 FileClose(1)
 Print "End of Data"

 FormMenu(0,0,1,"")
 FormButton(Disp_Start,-1,-1,-1,-1,"Start")
 exit()
 endif

 '----- Read a Line of data from Log File ----------
 procNMEA(FileReadLine(1))

 '----- If we get a GGA message lets update the display
 strif NMEAmsg = "GGA" then
 newtime=converttime(GGA_UTCTime,-5))
 FormLabel(Disp_time,-1,-1,-1,-1,newtime)
 Formlabel(Disp_Fix,-1,-1,-1,-1,GGA_FIXtxt)
 Formlabel(Disp_mode,-1,-1,-1,-1,GSA_SATMODE)
 Formlabel(Disp_sats,-1,-1,-1,-1,GSA_SATCOUNT)
 GSV_NOM=0
 GSV_MSG=0

 if GGA_Fix <> 0 then
 Formlabel(Disp_Longitude,-1,-1,-1,-1,GGA_Longitude+GGA_EW)
 Formlabel(Disp_Latitude,-1,-1,-1,-1,GGA_Latitude+GGA_NS)
 Formlabel(Disp_Alt,-1,-1,-1,-1,GGA_AltValue+GGA_AltUnit)
 Formlabel(Disp_Course,-1,-1,-1,-1,RMC_COG)
 Formlabel(Disp_Speed,-1,-1,-1,-1,Format(float(RMC_SOG * 1.1508),".0")+" mph")
 else
 Formlabel(Disp_Longitude,-1,-1,-1,-1,"")
 Formlabel(Disp_Latitude,-1,-1,-1,-1,"")
 Formlabel(Disp_Alt,-1,-1,-1,-1,"")
 Formlabel(Disp_Course,-1,-1,-1,-1,"")
 Formlabel(Disp_Speed,-1,-1,-1,-1,"")
 endif

 '--- Used for realtime display option
 strif oldgpstime <> newtime then
 oldgpstime = newtime
 if realtime = 1 then pause(1000)
 endif

 endif

 goto loop

endfunc

Program Snipit 1

The plotit function in the GPSLogPlot program is very similar to the dispit function, with
the exception of how the GPS information is presented. The plotit function uses a special
command built into the Zeus languages called GPSCVTLongitudedec and
GPSCVTLatitudedec to convert the GPS positional string data to an integer value in
degrees * 100000. This is a whole number that can be used for plotting.

One final variation of the dispit function is the StartCapture function used in the
GPSDataLogger program. In this function, a com port is opened and its parameters are
set based on the actual device selected. The function also calls various setup functions to
place the device into the correct mode when needed. Instead of calling the procNMEA
function directly, data from the device is added to a global variable called rxdat when it is
received. A call is then made to a function called procdata. This functions pulls a single
line from the rxdat variable one at a time and passes them to the procNMEA command as
before.

Sending Log Data

Plotting and displaying data is cool to play with, but the main reason we want to capture
the data is so that we can simulate an actual GPS module or receiver. I have included a
program called GPSLogOutput shown in Figure 13. GPSLogOutput allows you to play
back the captured log data to a serial port. The program looks and operates much like
the GPSLogDisplay program, but also sends a copy of the captured data to a serial com
port. You select the com port via the Settings menu shown in Figure 14. You can also
set the baud rate and flag the data to be sent in real time.

Figure 13

Figure 14

Using the Log Data with a Microcontroller

Next mont,h when we start to interface the GPS modules to a microcontroller, the
GPSLogOutput program will be indispensable. In addition to your PC, you will need a
DiosPro Microcontroller and a carrier board. I will be using the Dios Workboard Deluxe
shown in Figure 15. The DiosPro has a UART built into the chip that has a TTL
interface. This is perfect for the modules, but in order to use our PC as a simulator you
will need an EZRS232 interface shown in Figure 16.

Figure 15

Figure 16

In order to use the GPSLogOutput program you will need two serial ports on your PC.
One port will connect to the program port on the Workboard and the other will connect to
the EZRS232 module. Connect the following pins on the EZRS232 module to the Dios
Workboard as shown in Figure 17.

EZRS232 Pin 1 - Workboard VSS
EZRS232 Pin 2 - Workboard VDD
EZRS232 Pin 3 - Workboard Port 8
EZRS232 Pin 4 - Workboard Port 9

Figure 17

Load code shown in Program 1 into the DiosPro compiler and program the chip. Once
loaded, start the GPSLogOutput program and load up one of the LogData files I have
included. Set the GPSLogOutput com port to the one that is connected to the EZRS232
module. Set the baud rate to 4800 as shown in Figure 18.

‘DiosProg1.txt
func main()
 dim val
 hsersetup baud,HBAUD4800,start,txon

nodata:
 hserin nodata,val
 debug val

 goto nodata

endfunc

Program 1

Figure 18

Once this is done, hit the start program. You should see NMEA data in the debug
terminal of the Dios compiler as shown in Figure 19.

Figure 19

It just so happens that the DiosPro already has a library called DiosNMEA. It is
automatically loaded when you place a call to the procNMEA function, in your Dios
program as shown in Program 2.

'Dios NMEA Proccessor
func main()

 clear
 hsersetup baud,HBAUD4800,start,txon,clear
 print "Mode Lat Long Alt Speed Dir"

 print "---- ----- ------ ----- ----- -----"

loop:
 procNMEA()

 if NMEAcmd = 3 then 'GGA
 if NMEAfix > 0 then
 print NMEAfix,":",NMEAsats," ",{-6.0} NMEAlatmin," ",NMEAlongmin;
 print " ",{6.1} NMEAaltitude," ",{4.1} NMEAspeed," ",NMEAdir
 else
 print "No Fix ",NMEAfix,":",NMEAsats
 endif
 endif

 goto loop

endfunc

include \lib\DiosNMEA.lib

Program 2

This library will break down the GGA and RMC commands and load up a set of global
variables that you can use in your own program. In Program 2, I used the print command
to send various pieces of NMEA data to the debug terminal shown in Figure 20.

Figure 20

What’s Next

Next month I’m going to show you how to connect the various GPS modules to the
microcontroller and how to parse the data.

Be sure to check for updates and downloads for this article at:
http://www.kronosrobotics.com/Projects/GPS.shtml

Parts

The following is a breakdown of the source for all the components needed for Parts 2 and
3 of this project.

Spark Fun Electronics

EM-406A GPS module
http://www.sparkfun.com/commerce/product_info.php?products_id=465

EM-406 Evaluation Board
http://www.sparkfun.com/commerce/product_info.php?products_id=653

EM-408 GPS Module
http://www.sparkfun.com/commerce/product_info.php?products_id=8234

Copernicus Evaluation Board
http://www.sparkfun.com/commerce/product_info.php?products_id=8145

9-Pin Serial Cable
http://www.sparkfun.com/commerce/product_info.php?products_id=65

6V AC Adapter
http://www.sparkfun.com/commerce/product_info.php?products_id=737

External Antenna with SMA connector
http://www.sparkfun.com/commerce/product_info.php?products_id=464

SMA to MMCX adapter cable
http://www.sparkfun.com/commerce/product_info.php?products_id=285

KRMicros

ZeusPro

http://www.kronosrobotics.com/Projects/GPS.shtml
http://www.sparkfun.com/commerce/product_info.php?products_id=465
http://www.sparkfun.com/commerce/product_info.php?products_id=653
http://www.sparkfun.com/commerce/product_info.php?products_id=8234
http://www.sparkfun.com/commerce/product_info.php?products_id=8145
http://www.sparkfun.com/commerce/product_info.php?products_id=65
http://www.sparkfun.com/commerce/product_info.php?products_id=737
http://www.sparkfun.com/commerce/product_info.php?products_id=464
http://www.sparkfun.com/commerce/product_info.php?products_id=285

http://www.krmicros.com/Development/ZeusPro/ZeusPro.htm

KronosRobotics

EZRS232
http://www.kronosrobotics.com/xcart/product.php?productid=16167

DiosPro Chip
http://www.kronosrobotics.com/xcart/product.php?productid=16428

Dios WorkBoard Deluxe
http://www.kronosrobotics.com/xcart/product.php?productid=16452

http://www.krmicros.com/Development/ZeusPro/ZeusPro.htm
http://www.kronosrobotics.com/xcart/product.php?productid=16167
http://www.kronosrobotics.com/xcart/product.php?productid=16428
http://www.kronosrobotics.com/xcart/product.php?productid=16452

