LADDER + BASIC

Editor
Simulator
Web-Server

Internet
TRILOGI

Version 6.2

o
ﬁ@ﬂ Programmer’s

Triangte Bescanch Reference

International, Inc.

Copyright Notice

Internet TRILOGI Version 6.x are tfrademarks and copyrights
©2001-2009 of TRIANGLE RESEARCH INTERNATIONAL, Inc.
("TRI").

All rights reserved. No parts of this manual may be
reproduced, transmitted, franscribed, stored in refrieval
system, or franslated info any human or computer
language, in any form or by any means, without the
express written permission of TRIANGLE RESEARCH
INTERNATIONAL PTE LTD, SINGAPORE. Please refer all
inquiries o info@tri-plc.com

* MSDOS and Windows 95/98, NT, 2000 and XP are trademarks of
Microsoft,
MODBUS is a frademark of Groupe Schneider.
All other trademarks belong to their respective owners.

Disclaimer

TRi makes no representations or warranties with respect to
the contents hereof. In addition, information contained
herein is subject to change without notice. Every
precaution has been taken in the preparation of this
manual. Nevertheless, TRi assumes no responsibilities for
ernors or omissions or any consequential damages
resulting from the use of the information contained in this
publication.

Table of Contents

Chapter 1 - Internet TRILOGI 6.x Installation Guide

l. Infroduction to the TRILOGI Program
Il. Installing TRILOGI 6.x on Windows 98, Me, NT, 2000 or XP

Chapter 2 - Introduction to Internet TRILOGI
Client/Server Architecture

Chapter 3 — Using The TLServer — Web Server for TRILOGI

. Overview

Il. Serial Port Setup

lll. Configure Users

IV. Setup Emails

V. Files and Email Services

Chapter 4 — Running The Internet TRILOGI Client

l. Running The Internet TRILOGI Application
II. Running TRILOGI Applet Using Web Browser

Chapter 5 — Ladder Logic Programming Tutorial

l. Your Assignment: Creating Your First Ladder Logic Program
Il. Testing Your Ladder Logic Program Using The Simulator
il. Transferring Your First Ladder Program To The PLC

Chapter 6 — TRILOGI Ladder Logic Editor Reference

l. The Browse Mode
Il. The Circuit-Editing Mode

Chapter 7 - TRILOGI Main Menu Reference

l. File Menu

II. Edit Menu

. Controller Menu
IV. Simulate Menu
V. Circuit Menu

VI. Help Menu

Chapter 8 - Ladder Logic Language Reference

|. Ladder Logic Fundamentals: Contacts, Coils, Timers
and Counters
Il. Special Bits

2-1

3-1
3-3
3-8
3-10
3-15

7-1
7-9
7-13
7-19
7-20
7-22

IIf.
V.

Special Functions
Using TRILOGI Sequencers

Chapter 9 - Introduction to TBASIC Custom Functions

l.
Il.
IIf.
V.
V.
VI.

Overview

Custom Function Editor

Custom Function Execution

Simulation & Examination of TBASIC Variables
On-Line Monitoring of TBASIC Variables

Error Handling

Chapter 10 — TBASIC Statements, Functions, Operators

l.
Il.
Il
V.

And Variables

What are TBASIC Statement and Functions?
TBASIC Integer Constants, Variables & Operators
String Variables and Constants

Special Variables — EMINT, EMLINT & EMEVENT

Chapter 11 - TBASIC Keyword Reference

WVWONO O~ -~

AOLON—O OVONOOM~AWLN—O

ABS(x)

ADC(n)

ASC(x)

CALL n

CHRS(n)

CLRBIT v,n

CLRIO, SETIO, TOGGLEIO, TESTIO
CRC16

DELAY

. FOR ... NEXT

. GetChSV (n), GetTimerSV (n)
. GETHIGHT6(v)

. GOTO @n

. HEXS(n), HEXS(n,d)

. HEXVAL(x$)

. HSCDEF ch, fn_num, value

. HSCOFF ch

. HSTIMER n (High Speed Timers)
. IF..THEN..ELSE..ENDIF

. INCOMM(ch)

. INPUTS(n)

. INTRDEF ch, fn_num, edge

. INTROFF ch

. LEN(x$)

10-1
10-2
10-8
10-10

11-1
11-1
11-1
11-1
11-2
11-2
11-2
11-3
11-3
11-4
11-4
11-5
11-5
11-5
11-6
11-6
11-7
11-7
11-7
11-8
11-9
11-9
11-9
11-9

25.
26.
27.
28.
29.
30.
31.
32.
33.
34,
35.
36.
37.
38.
39.
40.
41,
42,
43.
44,
45,
46.
47,
48.
49,
50.
S1.
52,
53.
54,
993.
96.
57.
58.
59.
60.
61.
62,
63.
64.
65.
66.
67.
68.
69.

LET

LOAD_EEP(addr)

LOAD EEP$(addr)

LSHIFT i,n

MIDS(x$,n,m)

NETCMD(ch, x$)

OUTCOMM n,x

PAUSE

PIDcompute(ch,E)

PIDdef ch, Imt, P,1,D

PMON ch; PMOFF ch

PRINT #nx$;y;z
PULSEFREQUENCY(ch); PULSEPERIOD(ch); PULSEWIDTH(ch)
READMODBUS (ch, DevicelD, address)
READMB2 ch, ID, addr, var, count
REFRESH

REM (or)

RESET

RETURN

RSHIFT i,n

SAVE EEP data, addr

SAVE EEPS data, addr
SETBAUD ch, baud no

SETBIT v,n

SetCtrSV n, value; SetTimerSV n, value
SETDAC n,x

SETHIGH16 v, data

SETIO labelname

SETLCD n,offset,x$

SETLED n,m, value
SETPASSWORD string
SETPROTOCOL ch, mode
SETPWM n,x,y

SETSYSTEM n, data

STATUS (n)

STEPCOUNT(ch)
STEPCOUNTABS(ch)
STEPHOME ch

STEPMQOVE ch, count, r
STEPMOVEABS ch, position, r
STEPSTOP ch

STEPSPEED ch, pps, acc
STRS(n); STRS(n, d)
STRCMP(A$,B9)
STRLWRS(A$)

11-10
11-10
11-10
11-11
11-11
11-12
11-12
11-13
11-13
11-14
11-15
11-15
11-16
11-16
11-17
11-18
11-18
11-19
11-19
11-19
11-20
11-20
11-22
11-22
11-22
11-23
11-23
11-23
11-24
11-24
11-25
11-25
11-26
11-27
11-28
11-29
11-29
11-29
11-29
11-31
11-31
11-31
11-32
11-32
11-33

70.
/1.
/2.
/3.
74.
/5.
76.
/7.

STRUPRS(A$)

TESTBIT (v,n)

TESTIO (labelname)

TOGGLEIO labelname

VAL(x$)

WHILE ... ENDWHILE

WRITEMODBUS ch, DevicelD, address, data
WRITEMB2 ch, ID, addr, var, count

Appendix 1 - Application Notes & Programming Examples

Important Notes to Programmers of TRILOGI Version 5.x
TRILOGI Sample programs

1. Display Alphanumeric Messages on built-in LCD Display
2. Setting Timer/Counter Set Values (S.V.) Using LCD Display
3. Using a Potentiometer As An Analog Timer

4, Motion Control of Stepper Motor

5. Activate Events af Scheduled Date and Time

6. HVAC (Heating, Ventilation and Air-Conditioning) Control
7. Closed-Loop PID Control of Heating Process

Appendix 2 - PLC & PC Hardware Setup and Configuration

PLC to PC Connection
Networking Issues

Appendix 3 - PLC-to-Modem Communication Setup

1.
2,
3.

Modem Connection
Communication Speed
Software and Programming

11-33
11-33
11-33
11-33
11-33
11-34
11-34
11-35

Al-1
Al-3

Al-4
Al-5
Al-7
Al-8
Al-9
AT-10
Al-11

A3-1
A3-2
A3-3

Chapter 1: Internet TRILOGI 6.x Installation Guide

Introduction to the TRILOGI Program

TRILOGI is a trademark name used by Triangle Research International to
describe its family of Ladder and Ladder+BASIC program editor, compiler,
simulator and program up-loader software.

The original TRILOGI program was written to run under the Microsoft MS-DOS
operating system and today it is still available for programming TRi's range
of PLCs such as the E10, the H-series, the M-series, and the F-series PLCs. In
fact, we have included all the DOS version of TRILOGI software in the root
directory of your CD-ROM free-of-charge within the zip file “DOS TRILOGI
V4.13.zip"

The Internet TRILOGI 5.x and 6.x client/server suites are written to run under
all currently available 32-bit Microsoft Windows operating systems as
Windows 98, Me, NT, 2000, XP, and Vista (Vista 64-bit is compatible with
TRILOGI 6.14 and up). Internet TRILOGI is written in 100% pure Java, hence
in theory it could someday be ported to other O/S platforms such as Apple
OSX or Linux. However, at the moment only the following PC Windows O/S
have been tested: Windows 98, ME, NT, 2000, XP, and Vista. The
"SetupTLé.exe” file can only run under the PC based Windows O/S.

The main improvement in the new Internet TRILOGI version 6.x and its
accompanying TLServer 3.x is that in version 6.x, all data file storage and
communication are conducted using the international standard “Unicode”
(UTF-16) instead of the ASCII code found in the lower versions of TRILOGI
software. When used with Unicode-aware Operating System such as the
Windows 2000, XP, and Vistq, it is now possible to create program that uses
non-Latin based characters such as the Chinese, Japanese, Korean (also
known as CJK), Thai, Hebrew, and Arabic etc in their comments and 1/O
label fields. TRILOGI version 6.x still includes some enhanced capabilities
such as an EEPROM manager that allows reading/writing of the PLC's data
EEPROM directly within the TRILOGI software.

Internet TRILOGI version 6.x and TLServer 3.x also allow user to customize
their menu and on screen display so that the menu, screen display and
some online help texts may be shown in other international languages
including the CJK. There is even an opfion in the language text file for you
to increase the text size by 1 or 2 points to make it clearer to display some
international characters such as Chinese, or simply to make it easier to
read the menu and help text. Also, TLServer 3.15 and up has a larger

1-1

window size to allow more characters to be displayed, which is useful for
languages that use more characters.

Currently the program is supplied with the following language files:

Language ISO Abbreviation Language specific file
English en en_language.ixt
Spanish es es_language.ixt
Chinese Zh zh language. ixt

Users of other internafional languages can create their own specific
language help text by copying the “en_language.txt” file into a file named
as "xx_language.ixt” where xx is the two character ISO abbreviation of the
language. For example, to create a Korean language help text, you need
fo copy the “en_language.ixt’ file info a file name: "ko_language.ixt’ and
then edit the file to franslate the relevant English text into Korean language.
Even English language user may modify the content of their pull down
menu and on screen display by modifying the “en_language.ixt” file. You
can open some of the supplied language files (e.g. English vs. Spanish) to
understand how the English language items are translated to another
language.

When the TRILOGI version 6.x or TLServer 3.x program starts up, the program
will automatically try to load the specific language file based on the locale
of the users operating system and use the file content throughout the
session. However, if the program fails to find the corresponding language
text file, then it will use a set of internally defined English language text
strings for its entire menu and on screen display.

For English locale user, all TRILOGI 6.x help files are stored in the following
folder: "c:\TRILOGI\TL6\public\Help". However, if you start TRILOGI in
locale xx, then when you attempt to open an online help file, TRILOGI will
first check if there exist a folder "¢ :\TRILOGI\TL6\public\xx_Help”. If it
finds it then the help files will be loaded from this locale-specific folder. But
if it cannoft find the “xx_Help” folder it will then load the help files from the
default folder: "c:\TRi1LOGI\TL6\public\Help”. Hence for those who
wish 1o experiment with providing their own locale specific help files, they
should copy all the help files from the default folder into the new locale-
specific "xx_Help” folder and then make changes to files in the new folder.
When they press <F1> in TRILOGI the help files will be loaded from the
"xx_Help” folder.

1-2

Il. Installing TRILOGI 6.x on Windows 98, Me, NT, 2000, XP, or Vista

1.

In the root directory on the Internet TRILOGI 6.x CD-ROM, you should find
a folder "x86-Windows” which is where all the setup files for PCs running
MS Windows are located.

Since Intemet TRILOGI requires a Java Run Time Environment (JRE) on @
PC in order to run properly, you have to first determine if your PC already
has a JRE installed. You can check the java version on your PC by going
to “Control Panel” and find if there is an icon named “Java“. Double
click on the “Java” icon and check the installed Java version. If your
Java version is 1.4.2 or higher you don't have to install JRE again.

On the other hand, if your PC does not already have a JRE installed,
then you have to install Java Run Time Environment (JRE) Version 1.4.2
on your PC BEFORE instaling the TRILOGI Client/Server bundle. First,
double-click on the file "j2re-1_4 2 06-windows-i586-p.exe" to install the
JRE. Please follow all instructions provided by the Install Shield program
and install it preferably in the given default path.

NOTE: Previous versions of Trilogi were only compatible with JRE version 1.4.2;
however, Tilogi version 6.20 and up is also compatible with JRE version 1.5
and 1.6 in most cases (depends on the users operating system and the JRE

build)

4. After you have installed JRE 1.4.2, double-click on the "SetupTLé.exe" to

install Internet TRILOGI.

5. All TRILOGI Version 6.x files will be installed in the following default folder:

"CATRILOGITLé". You normally would not need to go directly to this
folder to run TRILOGI. This is because during installation of TRILOGI, a
program Group folder "Internet TRILOGI 6.x" will be created in the Start
Menu to provide short cufs to the TLServer program, the TRILOGI
application and the TL6 Applet starter, as illustrated in the following
picture.

) haneWIN Software 3

.Jj HF L4 ,§] Internet TRILOGI Helps

J:j IAR Systems » .Q LocalHost Applet.htm

J‘j ICQ 5 r ﬂ Tlserver (with Java Console)
Jﬂ InterActual r ﬂ TLServer Version 3.0

Jj Internet TRILOGI 5.3 L':, TRILOGI Version 6.1

fi@ Internet TRILOGI 6 i@ Uninstall Internet TRILOGI 6. 1
I InterVideo WinDVD 3

[F Mines »

1-3

Note: A short cut for TLServer is also created on the "Quick Launch”
toolbar. For Windows XP/Vista users, you may have to right click on
the tool bar area along the bottom of the screen and check the
"Show Quick Launch” option in order for the quick launch tool bar
to appear:

TLServer lcon

1-4

Chapter 2: Introduction to Internet TRILOGI
Client/Server Architecture

1. Internet TRILOGI is a Client / Server application suite. The entire program
is broken into two parts: the Server and the Client.

2. Server: In order to run the complete TRILOGI program, including access
to the PLC, you must start the TLServer first. TLServer behaves like a typical
web server and it is capable of serving HTML web pages as well as Java
Applet to an Internet Browser such as the Microsoft Internet Explorer or
Netscape Navigator/Firefox. TLServer connects to the PLCs via the PC's
serial communication port and it is the one responsible for conveying
communication messages between the Internet TRILOGI client and the
M-series/F-series PLCs. (Note: TLServer is not included with Education
version of TRILOGI since there is no real PLC involved.)

For XServer users: You do not need to run the TLServer if you have
installed the Ethemet XServer since the XServer provides similar
communication access between the client PC and the M-series/F-series
PLCs.

For FServer users: You do not need to run the TLServer if you are using the
Fserver, since the Fserver provides similar communication access
between the client PC and the F-series PLCs.

3. Client: The TRILOGI program is the one which you use to create your
ladder logic + TBASIC program and is called the "Client" program. (If you
are programming the PLC offline then you only need fo run the client
program without the TLServer) The beauty of the client/server
configuration is that it does not matfter whether the server and client are
located at the same computer or at 20,000 miles apart and they work
exactly the same way. The client and the server can communicate via
any form of network connection, including the Internet. This makes it
possible for the user to program the PLCs either locally or remotely via
the Infernet or even wirelessly via mobile Internet.

Another important advantage of client/server architecture is that multiple
clients may access the same server simultaneously. Hence you can run
multiple copies of the TRILOGI clients at different places around the
world simultaneously for troubleshooting a single PLC. You can also run
the TRILOGI client AND the “TRi-ExcelLink” clients simultaneously!

4, TRILOGI client software is available in two forms:

2-1

i. As a Local Java Application - The TRILOGI program (as well as the
JVM, see below) must be locally installed in the PC that it runs on.

i. As a Java Applet - The client computer only needs to use a Java-
enabled Web browser such as the Infernet Explorer 5+ or Netscape
Navigator 4.5+ to invoke the TRILOGI applet. There is no need to
install the TRILOGI software in the local computer.

Application

Applet

Pros

Starts up immediately.

Can read/write TRILOGI files
to local hard disk or to
TLServer,

o Can access any TLServer on

the network.,

Program behavior
predictable since the copy
of JVM is local.

NO need 1o install any
software or JVM at the client
computer,

Possible 1o control your PLC
via any “Cyber Café”,

Maintenance and Upgrading
of software is simple since
only one copy of the
TL50Applet.jar file needs 1o
e changed.

Centralized storage of
program files only af the
server. This is good for
providing PLC program
fraining.

TRILOGI Application vs Applet: Which is Better?

Cons

Require local installation of
TRILOGI software at every
client computer.

Require installation of JVM
at every client computer,

May need to specify the
proxy server IP address if
running behind a firewall.

Can only read/write TRILOGI
files to the TLServer but not
to the local hard disk.

Can only access the
TLServer from which it was
loaded.

May take a few minutes to
load itself the first time if
connect via dial up
modem. (Thereafter the
browser should cache it for
rapid start up.)

Program behavior may vary
for different make or
different versions of the
bbrowser.

We shalll describe how to run the TRILOGI Application and Applet software

in Chapter 4.

2-2

Chapter 3: Using The TLServer — Web Server for TRILOGI

. Overview

To Start TLServer, either click on its Icon on the Windows “Quick Launch bar”
(shown below) or click on the “Start” button and select “Internet TRILOGI 6.X",
then select “TLServer Version 3.x" and a TLServer panel will appear. You can
minimize TLServer but it should be actively running in order to service
network request from TRILOGI via the Internet or local area network.

TLServer lcon

1y Start

" PLC WebServer
Internet TRILOGI Server

IF Address1 = 192.162.1.180:9030

Serial Port Setup |

Configure Users |

Setup Emails ‘

Copyright (i) Tiangle Research Int'l, Inc
[2001-20097 Al Rights Reserved

Help

version 3.15

B

Eo'" 9B ®E O

TLServer ACts as a gateway to connect
the M-series (or F-series) PLC to the
corporate LAN or the Internet so that
they can Dbe controlled and
programmed by a TRILOGI client from
anywhere in the world.

When a client program such as
TRILOGI wants to read from or write o a
PLC, it send a command fto the
TLServer using the TCP/IP protocol
fransported via the Intranet, the
Internet or a local host connection.

The TLServer, upon receiving the command, will carry out the actual reading
or writing to the PLC via the PC's RS232 or RS485 port. The data received from
the PLC is then relayed back to the client program via TCP/IP protocol.
TLServer is also a Web Server, which serves up web pages that contains the
TRILOGI Java Applet to enable you to use any Java-enabled Web browser to
access the PLC without the need tfo install a local copy of the TRILOGI

application software

Note:

1. TRILOGI 6.x can only open or save files on TLServer 3.x but not on TLServer 2.x,
since TRILOGI 6.x requires the Unicode support found only in TLServer 3.0 in
order to open/save .PC6 files on the TLServer. However, TRILOGI 6.x can still
access and communicate with any PLC connected via the TLServer 2.x or

Ethermet Xserver.

3-1

2. Since Version 2.0, TLServer also provides "File and Email Services" to the
PLCs. That means that a PLC can send a command to the TLServer 1o open a
fle and save its data info the PC's hard disk. It can also command the
TLServer to send out the data as an emai. File and Email Services are
described in Section V in this chapter.

The current Email Service works differently from the original email function
provided in TLServer 1.0 in that TLServer does not poll the PLC; instead it is the
PLC that initiates an email request asynchronously. This makes it possible for a
PLC to dial-in via a modem to request the TLServer to help it send out an email
without demanding a constant connection the TLServer. However, the original
email function is sfill supported in Version 2.x and 3.x because it has the
advantage of being able fo service email requests for multiple PLCs linked via
the RS485 network.

TLServer version 3.15 infroduces a change fo the "Setup Emails" area, which is
explained in the Email Setup section.

When TLServer is first started, it will query the operating system for the IP
addresses of the computer that it runs on. (It may take a while to start up if the
O/S is slow to return the IP address). It will then display the obtained IP
addresses (maximum of two) on the TLServer front panel so that the user can
quickly determine the IP addresses that they can use to access the PLC. The
following are some possible IP address scenarios:

If the computer is not linked to any network or the Internet and does not have
any network adapter installed, then only the localhost P address
("127.0.0.1:9080" where 9080 is the port numiber) will be displayed.

Note: Regardless of whether your PC is networked or noft, the local host IP
address: 127.0.0.1:9080 is always available fo the client program running
on the same PC where the TLServer is running, even though it may not be
displayed on the TLServer's front panel. (TRILOGI and TRi-Excellink are all known
as "client" programs). So whether your PC is networked or not, you can still use
TLServer and TRILOGI on a localhost connection. In that case the TRILOGI and
TLServer work together on the same PC just like a nomrmal Window based
programming software. We recommend using the localhost IP address:
127.0.0.1:9080 if you are running both the client and the server on the
same PC. If the computer has an '‘always on' direct connection to the Internet,
then the IP address will be your Internet IP address.

If the computer is networked to the corporate Infranet, or you have
connected this computer to a router to share internet connection with a few
other computers, then the IP address shown is an internal IP address, also
known as the "Intranet" IP address. The intranet IP address is assigned by either
the Systemn Administrator or by the router (known as DHCP server). You can

3-2

access this computer from other computers on the same LAN, but the intranet
[P address is not accessible from outside of the LAN.

To access the TLServer from outside of the LAN, You will need to configure your
router's internal settings to define the PC that runs the TLServer as a "Virtual
Server'. You can then access the TLServer using the router's public IP address
and the routers does the job of franslating the public IP address to the infranet
IP address and route the messages to/from the PC that has been defined as
the virtual server. This process is known as Network Address Translatfion (NAT).

If you connect a computer in a LAN to the Internet via a dial up connection,
you will see two IP addresses: one is the Infranet address and another is the
Interet IP address. The Intranet address is only accessible from within the
Infranet. The Internet IP address will be what you need to use if you are
accessing TLServer from the Internet. See the PLC Setup & Configuration
section of the installation gquide for more detailed explanation of Intranet
Installation and problem with Firewalls.

Notes to Dial-Up Users: If you are testing the Internet capability of TLServer using
dial-up connection, you must connect to the Internet first before staring
TLServer so that TLServer can report the correct Internet IP address to you. You
will not see the local host IP address (127.0.0.1), only the Internet IP address will
e shown.

The moment TLServer is running, it is ready to accept connection from the
TRILOGI client. You can also configure TLServer's communication port sefting,
add/remove users from the system and set up TLServer to query the PLC for
outgoing email requests and process them accordingly. The following sections
explain the function of each bufton. (Remember, you can also call up their
context-sensitive help by pressing <F1> key after pressing the relevant button
on the TLServer front panel.)

IIl. Serial Port Setup Serial Part Setup_|

1. Setting Up and Test Serial Communication

This dialog box allows you to configure the serial port of the host computer
to match the seftings on the PLC for proper communication. Most of the
items here are self-explanatory. If you have more than one PLC connected
to the host computer via RS485, all the PLCs must have the same serial port

setftings as the TLServer. The LowenPort | 1o tton allows you to test whether the
communication port is available to TLServer. You can also click the

_OClose Part button to temporarily relinquish the port to other applications that
uses the serial port (such as WInTRILOGI 3.5x). Note that you will need to
close an opened port before you can change its parameter.

3-3

The "Command String” text entry field allows you o test communication with
the PLC using its native or MODBUS ASCII protocols. If you enter a string here
and press <Entfer>, the ASCII string will be sent to the PLC connected tfo the
serial port and the response string will be displayed in the bottom text box. If
the serial port is not yet opened this command will automatically open it.
Note that only multi-point host link commands are accepted here. The
only point-fo-point command acceptable here is the "IR*" command
which queries the ID address of the PLC.

Port Name: Coms ~ | Baud Rate 38400 -
Data Bits: a w | Stop Bits: 1 -
Farity: Maone - | Time Out (ms) |500

| Clase F'nrt| | ‘ |
r r |
Command String: (Press <Enter= to Send)
IR*
Response Strings & Modem Messages M

COMS opened at: 38400bps.
(Please close port before changing any parameters)
IR01*

Change F'LCID| Close | F1-Help

If you have only one PLC connected to your TLServer computer, then you
can test the communication now using the following command string:

Command String : IR*
Response String @ IRO1*

The response string fells you that the ID address of this single PLC is O1. You
can then fry other host link commands using this ID address. (e.Q.
@0TRIO000* to query the states of inputs #1 to #8)

If you have more than one PLC connected you should not use the "IR*"
since all connected PLCs will fry to respond simultaneously, thus resulting in
a gibberish return string. To change the ID of a PLC, e.g., from 01 to 05, you
can send the command string "@01IW0500*" to the PLC. In TLServer 2.0

and above there is dlso a _CMENEEPLEID | 1 yon that does this for you

3-4

automatically. You can click on the "Detect ID" button 1o check the current
ID and then the "Change ID" button to write the new ID to the PLC.

2. Changing Communication Settings

Most likely you may want to leave the comm port settings at their default
values: 38,400 bps, 8 data bits, 1 stop bit, no parity. Some reasons for
changing the comm port settings may be due to the need to change the
PLC's serial port to lower values (e.g. for communication via radio using
9600 bps). Changes to the comm settings are saved to the TLServer
configuration file: "TLserverl.cfg" when you quit TLServer.

One other scenario is when you need to power cycle an M-series PLC with
DIPswitch #4 turned ON (to halt the CPU in order to disable any execution
by the "Tst.Scan" pulse). Since the PLC's COMM1 port is set to 9600 bps
when power ON with DIP Switch #4 set, you will need to change the baud
rate temporarily in order to communicate with the PLC (e.g. fo blank out a
program that causes trouble).

However, do remember to change the baud rate setting back to 38400
bps after you have reset the PLC with the DIP switch 4 OFF, otherwise you
may have problems communicating with the PLC later on since changes to
comm settings are automatically saved.

NOTE: The F-series PLCs will be forced to the default baud rate of 38400 bps
with 8 data bits, 1 stop bit, and no parity when started in pause mode (for
all 3 serial ports). The F-series PLCs will NOT be forced to 9600 bps as for the
RS232 port on the M-series PLCs.

3. Modem Support

a) Dial Modem: TLServer 2.x and 3.0 incorporates support for dialing a
modem connected to the PC's COM port. This is useful if the PLC has to be
located at a remote location, but yet stil has access to the public
telephone line or to a cellular phone. You can then connect the PLC to @
standard analog modem such as the US Robotic 33.6Kbps or Hayes Acura
smart modem. The TLServer can then dial the phone number of the remote
modem and make a connection. Once a connection is established, the
remote PLC is immediately accessible to client applications such as
Internet TRILOGI or TRi-ExcelLlink, etc over the Intemet, Intranet or localhost
as if it were connected to the TLServer via the serial port directly.

Notes:

« Due 1o the time delay for modulation/demodulation process as well as
fransmission delay, two-way communications via modem tends to be
noticeably slower than connection made by direct cable connection. This

3-5

is quite normal and does not indicate a problem with the communication
setup.

« The PC's modem must be able to emulate the COM port of the PC in
order for the TLServer modem function to work. Some of the newer
computers employ "win modem" or "soft modem" which may only work
with Windows' dial-up networking. These kinds of modems are implemented
in sofftware and they do not necessarily emulate a standard PC COM port
properly. They also demand quite a bit of CPU horsepower to process the
communication. Therefore these types of modem may not work too well
with the TLServer. If your built-in soft modem does not work properly with
TLServer, you should get an external modem.

« To setup TLServer to dial a modem, first close the active COM port by
clicking on the "Close Port" button. Select the COM port where the modem
is connected (you can find out the which COM the modem is connected
to by checking the "Control Panel -> Modems -> Properties"), then click to
select the "Modem" checkbox. You wil then be able to enter a
telephone number to dial. The 3 buttons: "Connect’, "Hang Up" and
"Special' become enabled when you select the "Modem" mode. Note
that the "Baud Rate" field now becomes the "DTE speed" which specify the
line rate between the PC and the modem (this has nothing to do with the
actual baud rate between the modems which will be automatically
negotiated based on the quality of connection). Normally you should
leave the DIE speed set 1o the highest value (115200) unless your modem
manufacturer specifies otherwise. The PLC can be operating at a different
baud rate from the PC to modem-line-rate because of the
modulation/demodulation action of the modem.

Important: The PLC-to-modem connection must be properly prepared
before you can use TLServer to connect to the PLC's modem. Please refer
to Appendix 3 to read more details about the PLC-to-Modem
Communication Setup.

Once you have entered a proper phone number, click on the "Connect"
button to start dialing the modem (make sure that the "Auto Answer" check
box is not checked). If the remote modem is busy or does not answer the
call you will see the corresponding error messages in the response box.
Click on the "Hang Up" butfton anytime to abort the dialing operation.

If you click on the "Special' buffon a special dialog box will appear as
follow:

3-6

« You can change the DIE speed by
selecting a new value from the choice

B Special Setup

DTESpeed | 115200 - menu.

SLislls « You can specify a special AT coommand
|-"~T-5tP‘€D to be sent to the modem during modem
Call-in Password initialization. Normally you can leave this

|| field fo its default value which is AT&KO.

You can also specify a special "Call-in Password" which is only used if the
TLServer puts itself in auto-answer mode (see description later). Any
incoming connection made by a remote modem must give the correct
password upon connection; otherwise the connection will be immediately
dropped. The Call-In password feature is disabled if the corresponding
textbox is empty.

b) Auto Answer: If you select the "Auto Answer" checkbox and click on the
"Connect" button, the TLServer will setup the modem to automatically
answer the incoming call on the first ring. There are many uses of this
capability:

Any numiber of PLCs in the field can periodically dial in to a single TLServer
and write or append the values of their internal variables to data files on
the PC's hard disk using the PLC File Service commands. This is extremely
useful for deploying the M-series/F-series PLC for data-acquisition purposes.
You can format the data using CSV format so that the file can be readily
imported into an MS Excel or Lotus 123 spreadsheet.

The remote PLC can dial in and ask TLServer to send out its data to any
email address immediately.

The remote PLC can dial in and synchronize its real time clock with the
TLServer.

The TLServer can play the role of an ISP where the PLC can dial in and
e accessible to the Infernet.

Some ". PC5" sample programs that enable a PLC to dial in to the TLServer
and request for file or email services are provided in the following folder:

"C:\TRiLOGI\TL6\usr\samples\FileService_Modem"
To prevent unauthorized access by any incoming call, you can specify a
"Call-in Password" string as described above. If the "Call-in Password"

contfains any text other than an empty string, then the incoming caller,
upon connection, must immediately send a CR-terminated string that

3-7

matches the "Call-In Password" string in order to maintain the connection.
If the password is incorrect the TLServer will disconnect the remote modem
to prevent unauthorized access. If the call-in password is validated the
TLServer will acknowledge it by sending a CR-terminated string "<OK>" 1o
the remote PLC via the modem. It is the duty of the incoming caller to
check the acknowledgement string to ensure that the TLServer does not
drop the connection.

lll. Configure Users Configure Users |
By definition, only the "Administrator” is e @
authorized to add/delete users and
change password. Hence when you Username: | Administrator

click on the “"Configure Users” button,
you are assumed to be the
Administrator and you will be asked to
enter the Administrator's password to Cancel

gain entry. By default, no password
has been defined for the
Administrator, so you should just press
<Enter> key to gain entry the first time.

Pas=word: ||

Once you get through the Administrator Login screen, a dialog box will
popup, which allows you to add new users who are allowed access to the
TLServer and the PLCs. You can also change the password, username or
the access level of an existing user or delete an existing user. A new user
defined here will be given his/her own exclusive subdirectory to store ladder
programs. For PCs, this directory is located at:

"C\TRILOGI\TL6\usr\<username>""

where <username> is the same as the Username defined here.

3-8

« "Select Username” - Double-Clicking on [e @

an existing username opens up the
username/ password dialog. You can now [ServerPort 9080

add password to the Administrator if you T e
wish to prevent unauthorized access o the rdministrator
predefined usernames and passwords. samples

There is also a pre-defined user named -Add New User -

“samples” with no password where many
samples TRILOGI files are stored.

If you select a username and then press
the key, you can delete the user
provided its directory is empty. (You can
use Window Explorer or TRILOGI Application

1o delete the contents of the user's directory M
first before deleting him/her from TLServer).

"- Add New User -" Clicking on this field allows you to add new users to
the system. You can add as many users as you like subject 1o memory
and hard disk limit.

Server Port: If you click the check box to the left of the "Server Port"
label, you can change the default "port" that the TLServer listens on.
When the client accesses the TLServer. Whatever you define here must
e matched by the same port number

E.g. if the port numibber = 8000, then localhost access must be:
http://127.0.0.1:8000/

However, if the port number is defined as 80 (default port for HTTP
server), then you can access the server using just the IP address without
the port number: http://127.0.0.1/

What Port Number Should TLServer Use?

In most cases you can simply use the predefined port number “2080".
However, you may like to read the explanation box below regarding
definition of a "Port". You can see that the default port for most public web-
servers is port 80. You can define TLServer to listen at port 80 as well; in that
case there is no need to specify the port number in the URL. However, there
are reasons why you may or may not want to do that. It depends on
whether you are installing TLServer on a corporate intranet or on the public
Internet and whether the client (TRILOGI) is to access TLServer within the
intranet environment or from the public Internet. Please read Appendix 2:
"PLC & PC Hardware Setup and Configuration” for an explanation of how to
use the port number properly.

3-9

Ports, or addresses within a computer, are used to enable
communication between programs. Port addresses are 16-bit
addresses that are usually associated with a particular application
protocol. An application server, such as a Web server or an FIP
server, listens on a particular port for service requests, performs
whatever service is requested of it, and returns information to the
port used by the application program requesting the service.

Popular Internet qpplication protocols are associated with well-
known ports. The server programs that implement these protocols
listen on these ports for service requests. The well-known ports for
some common Intermnet application protocols are shown below:

Port | Protocol
21 File transfer protocol
23 Telnet protocol
25 Simple mail transfer protocol
80 Hypertext transfer protocol

V. Setup Emails Setup Emails

This TLServer Email capability is first implemented in TLServer 1.0 and is
carried forward 1o Version 2.0 and above. This method depends on the
TLServer to periodically scan each configured PLC for the state of their
email request flags and hence require that the TLServer be constantly
connected to the PLC(s) via the serial port. (Another email support function
available only to TLServer version 2.0 and above is described in the next
section: “File and Email Services")

NEW!. TLServer version 3.15 offers a whole new look to the Email Setup,
which has all the same features as before plus a couple of additions,
including Port No. specification, optional Authentication and a Test Email
function to test the setftings you have entered. See below for descriptions
of the additions.

A PLC program raises an email request flag by sefting the variable
emEVENT [1] to a non-negative value (see explanation on "Writing TRILOGI
Programs that Can Send Emails" in the Iater part of this section) whenever it
needs to send an email. The TLServer, upon sensing that an email request
flag has been raised, will extract the sender, recipient and message strings

3-10

from the PLC's internal variables and send them out using the pre-defined
SMTP outgoing mail server.

A single TLServer can service the email requests for one or more (max. =
256) PLCs connected to it via RS232 or RS485. To setup the server to
handle email requests, click on the "Setup Emails" bufton on the TLServer to
open the following dialog box:

SMTP Mail Server: This will be the .l Email Config. g@@

same Outgoing Mail Server that SMTP Mail Server Fort Mo,

you use in your email program | | |25 T Authentication
such as the Eudora or OUHOOK Auth. Username Auth. Password
Express. If in doubt, ask your ISP or | | |

System Administrator for help. This
server must be setup properly

FLC ID# Check Every (seconds)

before the TLServer can send any 31” 3 e
email. 2| =
o gg g Ernail Test

Port No.: This is the port that your 06 0

Outgoing Mail Server will use to || o | §

send emails. The default port gi g

number is 25, which is the most ! 0

common port; however, some || o5 | |0 SeESEE

Mail Servers will use a different
port and you should check with
your ISP or System Administrator if
you are not sure.

Authentication: Some ISPs will only allow mail to be sent through their
Mail Server if it originates from a trusted IP address (typically, only the
Internet IP address that the ISP assigns to you). If this is the case, then
you may need to authenticate your IP address if it is different from the
one provided to you (If you are sending mail from a location
reqgistered to another ISP using your Mail Server). If your ISP uses
Authentication, then you will need to check the Authentication box
and provide the correct Auth. Username and Auth. Password. If you
are unsure about this, then you should contact your ISP or System
Administrator for help.

Auth. Username: If Authentication is required, you will need to provide
the correct Username. This is provided by your ISP and you should
contact your ISP or System Administrator if you don't know what it is or
if you don't know if you need it.

Auth. Password: If Authentication is required, you will need to provide
the correct Password. This is provided by your ISP and you should
contact your ISP or System Administrator if you don't know what it is or
if you don't know if you need it.

PLC ID# column: For you to select PLCs with ID from 0O-FF (256 in
total) to set the email service period.

Check Every (seconds) - this allows you to define how often the
TLServer should check the PLC (the email service period) for the state
of the outgoing email request flag.

Simply click on field next to the PLC ID# of interest to open up a text entry
field (as shown in the figure for ID=02). Enter a non-zero value (in seconds)
to define its email-servicing period.

Note: Both SMTP Server and email service period definitions will be saved to
the hard disk when you exit TLServer program. They will be reloaded when
you start TLServer again. This email service period does not determine how
often the PLC will send email, since email will only be sent when the email
request flag is set even if you had set a very short email service period. It
only affects how quickly the email will be sent whenever a PLC raises its
email flag. You should set a short service period (say every 10 seconds) for
urgent email (such as alarm condition). For non-urgent email such as
hourly or daily production report you can set a much longer servicing
period to reduce the communication loads on the PLCs.

You can test your email configuration by clicking the _E™! Tt | putton

once you have entered all the correct seftings. Once you click the "Email
Test" button TLServer will initiate the sending of a test email using the Mail
Server you specified. A new window will pop up, as shown below, that
allows you to enter the recipient email address.

B3 Test SMTP Settings X

RecipientEmaiI“

to receive atest Email from TLServer

Once you have typed the recipients email address, you can press enter 1o
send a default email (can't be changed). If it works, you will see a
message window that says the email has been sent, as shown below, and
you will receive an email with the following content: "Test Message sent
from TLServer"

3-12

Test Email has been sent

Check mailbox of sales@tri-plc.com for the test message

If some settings in the email configuration are not correct or you do not
have a working Internet connection, you will see an error message, as
shown below, and you should contact your ISP or System Administrator if
you are not sure how to resolve the problem.

Problem Sending Test Email

javax.mail.MessagingException: Could not connect to SMTP host 96.49.10.153, port: 25; nested exception is:java.net ConnectException: Connection timed out: connect

Inactive PLC
TLServer attempts to communicate with every PLC that has a non-zero
email service period. However, if the PLC is inactive (e.g. It has not been
turned ON or has been disconnected from the server) the communication
will fail. Since communication failure takes considerable amount of CPU
waiting time and could affect the normal communication with other
active PLCs, inactive PLCs are intermnally marked by the TLServer (shown as
SR Mmessage in the email setup dialog) and will not be checked
according to their defined service period to avoid repeated
communication failure. However, TLServer will re-scan these inactive PLCs
every two minutes 10 check whether they have come on-line. If an
inactive PLC is found to respond to command it will be unmarked and put
back in service for its email request.

You can also manually force the re-scanning of all PLCs by clicking on the
Check

button once. Then scroll to the PLC of interest to check if there is a
HiluuBEliIE message. Check the PLC communication port wiring if there
iS an error.

Writing TRILOGI Programs that Can Send Emails

In order to send an email, the TRILOGI program needs to use the string
variables AS, BS, CS$ to store the headers and DS to Z$S to store the
messages. (Not all strings need to be used; unused strings are still
available for normal program use) The special variable emEVENT[1] is used
as an email request flag which should be initialized to -1 when the
program is not requesting email service. When the TRILOGI program wants
to send an email, it first stores the sender, recipient and subject into the
following variables:

3-13

AS Sender email address - which can be used to
identify the source of the email.

BS Recipient email address - this one must be
accurate

C$ Subject of the message.

D$ First line of Message

ES Second line of email message

Z$ The 23rd line of the email message
-1 = NOT sending any email.

emEVENT[1] | O to 23 = number of lines in the email message

body which are contained in DS to ZS.

The maximum number of lines in your email is limited by the numiber of
string variables DS to Z$ (23 in total) available in the M-series/F-series PLCs.

For example, if the PLC needs to send email to frilogi@yahoo.com with a
1-line greeting, then the program needs to activate a custom function
that contains the following statements:

A$ = ""Demol@PLC" " sender

B$ ="trilogi@yahoo.com" " recipient
C$ = "This is an email demonstration”

" subject

D$ = "The time is"
+STRS(TIME[1]D+":"+STRS(TIME[2])+
. How are you doing?" " Message body
emEVENT[1] = 1

You must also setup the email service period (say every 10 second) in the
"Setup Emails" screen for this PLC. When the TLServer scans the PLC and
found that its emEVENT[1] is set to 1, it will extract the headers and
message body from the PLC's sting variables. Only AS to DS will be
extracted in this example since the message contains one line of body
text only, as indicated in emEVENT[1]).

TLServer will then contact the SMIP server to send out the email. In
addition, after processing the email request, the TLServer will set the
emEVENT[1] variable to a value of "-1" (no email). Hence there is no need
for the TRILOGI program to worry about clearing the email request flag
after the email has been sent. In addition, this provides a way for the PLC
program to know whether the TLServer is functioning properly and whether
the email request has adlready been processed. However, do take

3-14

note that even if the emEVENT[1] has been reset it does not guarantee that
the email has been correctly dispatched to the recipient. Success of
emailing is subject to the proper configuration of the TLServer, the network
quality and availability of the SMTP server at the moment when TLServer
fries to send out the email. For urgent situations you may consider sending
out multiple emails periodically until the user has attended to the
machine.

. Files and Email Services

Starting from version 2.0, the TLServer provides a number of “File and Emaiil
Services” to the PLCs via the serial comm port. Basically a PLC can send
service requests to the TLServer using "tags" (which are ASCII characters
enclosed between the '<' and '>' characters) and the TLServer will perform
the service requests upon receiving valid commands. All data between
the <command [parameter]> tag and the </> tag will be treated as
data for the requested service.

Since the PLC is the one that initiates the service request, it does not need
to be linked to the TLServer all the time unless it needs to request a service
from the TLServer. This makes it possible for a remote PLC to connect to the
TLServer, via the telephone line and modem to perform the required file or
email services, then disconnects itself from the TLServer so that other PLCs
can take tumns to connect to the TLServer to request for services.

Note: All the files created or used in the write/append/read actions are
located in the directory: <trilogi base directory> [FileService. (Hence the
default path is C:\TRILOGI\TL6\FileService). You may also
read/write files that are located inthe sub-directory below the
"..../FileService" directory provided that the sub-directory already exists.

The currently supported files and emails services are described below:

1. Write data to E.g. To save data of DM[1] fo DM[10] to a file name

file. "testWrite.Ixt", execute the following statement from a custom

function:

Format:
PRINT #1 "<WRITE testWrite txt>" ' Write data request

<WRITE FORI=1T0 10

[Filename]> o

data data data. .. PRINT #1 DM[I;" ", REM delimited by space characters.

data NEXT

PRINT #1 'send a CR character.
PRINT #1 "</>" 'End of Service request

</>

ThA TICAnAr will AlAcA HhA filA AftAr i+ ra~AbiAe HhA ARA AF

3-15

sewice tag "</>" from the PLC and it will in tumn send a
"<OK>" string fo the PLC to acknowledge that the WRITE
request has been completed successfully. It is up to your PLC
program to check for the "<OK>" tag to determine if the
service it requested have been completed successfully.

2. Append data
to file

Format:

<APPEND

[filename]>
data data
data...
data....</>

E.g. To append the fime of an event to a file name
"testAppend.ixt', execute the following statements in a
custom function when the event take place:

PRINT #1 "<APPEND testAppend.ixt>" ' Append data request
PRINT #1 "Event Time = ", TIME[1];":"; TIME[2];":", TIME[3]

PRINT #1 "A="A

PRINT #1 "</>" 'End of Service request

e |If the file does not exist a new file wil be created.
Otherwise, the PLC's real time clock data in the format
"hh:mm:ss" and the value of A will be appended at the
end of the file "testAppend.ixt" every time the above
statements are executed.

« The TLServer will close the file after it receives the end-of-
service tag "</>" from the PLC and it will in fumn send a
"<OK>"tag to the PLC to acknowledge that the APPEND
request has been successfully completed. It is up o your
PLC program to check for the "<OK>" tag to determine if
it the serice it requested have been completed
successfully.

3. Email data to
recipient

Format:

<EMAIL [email
address]>

Sender: [sender
email]

Subject: [subject
text]

data data data...
data

<>

E.g. To send data to an email address:
whoever@yahoo.com with the subject "PLC Email Test",
execute the following statements:

PRINT #1 "<EMAIL whoever@yahoo.com>""'change it fo
your own email.

PRINT #1 "Sender: triuser@hotmail.com" ' it can be anything.
PRINT #1 "Subject: PLC Email Test"

PRINT #1 "Hello, this email is sent by your friendly TRILOGI
PLC"

PRINT #1 "Don't worry, everyting is working out great today!"
PRINT #1 </>

Note:

¢ "Sender!" field should be in email format such as
XXX@vyyy.zzz, but it does not need be a valid email
address.

3-16

o "Subject:” field is optional and may be omitted totally

« The TLServer will first save all the data it received into a
temporary file named "Email.ixt" in the default directory.
After the TLServer receives the end-of-service tag "</>"
from the PLC and it will then send out the email to the
recipient email address. This email service will make use
of the SMIP server defined in the "Setup Emails" portion of
the TLServer configuration, so make sure that you have
defined a correct SMIP server before testing the email
service function.

When the email has been successfully sent via the SMIP
server, the TLServer will send an "<OK>" tag to the PLC to
acknowledge that the EMAIL request has been successfully
completed. It is up to your PLC program to check for the
'<OK>" tag to determine if it the service it requested has
been processed.

4. Read Data
from File.

Format:

<READ
[filename]>
</>

This service allows the PLC to request the TLServer to open a
text file and upload its content to the PLC. This may be
useful for loading some previously saved parameters.

Upon receiving this command and if the specified
[flename] is successfully opened, the TLServer will begin
sending all the ASCII characters contained in the text file to
the PLC. Note that line breaks in a text file are sent to the
PLC as CR character only and not as a CR+LF pair. As
such, your PLC program can easily use the INPUTS(1)
command to read in all the CR-terminated fext string one
string at a time and then interpret or convert the data as
necessary. After sending out the last byte in the data file to
the PLC, the TLServer wil send a CR-terminated
acknowledgement string "<OK>" to the PLC to signal that
the READ command has been properly completed.

5. Read Real
Time Clock
From TLServer

Format:

<READ RTC[]>
</>

This service allows the PLC to get the Real Time Clock data
of the TLServer (i.e. the PC in which the TLServer runs on).

The type of data is indicated in the Date[n] and Time[n]
parameter which correspond to the DATE[n] and TIME[N]
system variables in TBASIC:

i.e. Date[1] = year; Date[2]=month; Date[3]=day;
Date[4]=DayofWeek;

<READ Date[n]>
</>

wheren = 1,2,3,4

<READ Time[m]>
</>

where m=1,2,3.

Time[1]=hour; Time[2]=minute; Time[3]=second.

For full synchronization, use the <READ RTC[]> tag which
returns the values of the Date[1], Date[2], Date[3], Date[4],
Time[1], Time[2], Time[3] in 7 CR-terminated ASCII strings.

Upon receiving this command the TLServer will immediately
send the relevant clock/calendar data as CR-terminated
ASCII string(s) to the PLC. Your PLC program can easily use
the INPUTS(1) command fo read in the data and convert
them info integers using the VAL command. Note thatf
unlike the "READ file" service, the TLServer does not send
'<OK>" string affer performing the "READ RTC" service.

6. Get IP Address

Format:

<IP>

This command allows the PLC to query the TLServer's IP
address. Upon receiving this command, the TLServer will send
the following response string:

If successful: xxx.xxx.xx.xxx:nnnn (IP address:port of Xserver)
If error occurred: ERR: (description of error)

This command does not require a </> fo close the tag.

7. Connect to Remote TLServer or XServer using NETCMD$

Format:

<CONNECT [IP address:port of TLServer or XServer]>
[username string]
[password string]

TLServer replies with *<CONNECTED>" if successful or “ERR:..." if
error encountered

[host link command 1]

TLServer send the host link command to remote TlLserver or
Xserver and return the response to the PLC.

[host link command 2]

TLServer send the host link command to remote TLserver or
Xserver and return the response to the PLC.

</>

3-18

Description: This service was originally developed for an M-series PLC to
communicate with other PLCs via TCP/IP protocol using the Xserver. This
same capability is now also ported to TLServer 2.1 and 3.x. It allows your
PLC to login to another remote TLServer or XServer via the LAN or the Internet
and your PLC can then use the NETCMDS command fo exchange data
with the PLCs that are connected to that remote server.

You execute this command by first sending the sting <CONNECT
XXX XXX XXX XXX Q080> 10 the TLServer where xxx. xxx.xxx.xxx is the IP address of
the remote TLServer or XServer. Then followed by the username and
password needed to login to the remote server. Once the connection is
established, the TLServer will return the response string <CONNECTED> fo
the PLC. When the PLC receive the <CONNECTED> string, it can use the
TBASIC “NETCMDS$” command to read or write data to the remote PLC as if
the remote PLC is on the same local network. Multiple NETCMDS
commands can be executed but there should not be more than 2
seconds delay between each command. This is because If the XServer
does not receive any serial string from the PLC for more than 2 seconds it
will ferminate the <CONNECT> session automatically. Once the command
exchange has been completed, youll send a </> tag to end the
connection gracefully.

Note: similar to local RS485 communication, the source PLC that talks
across the network using the <CONNECT> service should have a different
ID (00 to FF) from the target PLC that it is trying fo talk fo. E.g. A PLC with
ID=01 should not talk to another PLC with ID=01 even though the other PLC
is connected to a remote server. By changing the ID of one of them, you
will avoid the problem of a response string from the other PLC being
misinterpreted by the sending PLC as an incoming host link command.

Examples of using the <CONNECT> tags can be found in the sample
programs in the following folder:

"C:\TRiLOGI\TL6\usr\samples\XServer"

3-19

Chapter 4: Running The Internet TRILOGI Client

I. Running The Internet TRILOGI Application

Basically there are 3 methods that you can start the TRILOGI application, as
follow:

1)

2)

3)

If the Internet TRILOGI and JRE have been properly installed on your PC,
you can just select the short-cut item "TRILOGI Version 6.2 Application" in
the "Start Menu" to start the TRILOGI application.

I haneWIN Software ’

M e ’
I AR Systems »
im Qs 3
I InterActual b
I/ Internet TRILOGI 5.3 ¢

|&] Internet TRILOGI Helps

,Q LocalHost Applet.htm

ﬂ Tiserver (with Java Console)
ﬂ TLServer Version 3.0
B TRILOGI Version 6.1

G Internet TRILOGI 6 i@ Uninstall Internet TRILOGI 6.1

I InterVideo WinDVD 3

I Tunes k

You can also open My Computer and open the folder: C:\TRILOGINTL6),
then double click on the file "TL62.jar" to start TRILOGI application. If JRE
has been properly installed the TL62.jar file will be recognized by
Windows to represent executable Java program and it will run
immediately. (Note: In the same folder you wil also find the file
"TLServerd1.jar" which is the actual jar file for TLServer).

The third alternative is to run the program from DOS command line: First,
run the MS-DOS prompt (also called Command Prompt in Windows XP)
and then navigate to the directory "CATRILOGINILS". At the directory,
enter the following command line:

C:\TRILOGI\TL6> java -jar TL62.jar or
C:\TRILOGI\TL6> java —Duser.language=zh -jar TL62.jar

The "TL6.BAT" batch file located at the "C:\TRiLOGI\TL6" folder
contains the first form so you can double-click TLé6.bat to start the
program too. This method of starting TRILOGI application has an
advantage in that it opens the Java Console window, which can be
useful because system errors and exceptions are normally reported via
the Java Console. This can give clues to the reason of failure. (You can
also start TLServer by running the "tlserver.bat" file.)

4-1

NOTE: The main-window window size is "memorized" in the config.1l6 file.

The second form forces the program to start in a different locale and in
the above example, TRILOGI is forced to start in Chinese language
locale and it will load the Chinese text from the zh_language.ixt file.

You can use the forced locale method to test the program in other
language mode easily without having to actually change the locale of
the O/S. This feature is tested to work on system with JRE 1.4.2 and up
(JRE versions above 1.4.2 should now work for Asian language font such
as: Chinese, Japanese and Korean).

HELZP!!II

When running TRILOGI, you can get on-line help any fime by pressing
the <F1>. A Help window will open to show you the typical key/mouse
actions. You can also click on the <More Help> button to get context-
sensitive help loaded intfo your web-browser. Trilogi version 6.2 and up
now uses the default browser of your computer to display help data If
the "config.tlé" line does not contain the path to an alternative browser
in the: "Browser Path=" line (which it doesn't by default).

However, If you do not want to use the PCs default browser, then you'll
need to use the "Notepad" program to manually edit the "config.tlé"
file in the "C:\TRILOGINIL6\" directory. For example: If you wanted to use
Internet Explorer as the browser for Trilogi, you will need to Modify the
first line in "config.tlé" as follows:

Browser Path=C:/Program Files/Internet Explorer/[IEXPLORE.EXE

to match the correct browser path info. There is no need to configure
the applet browser path since the TL6 Applet automatically uses the
same browser in which it was loaded to open the help files. Hence, the
applet does not need to know the browser path at all.

[I. Running TRILOGI Applet Using Web Browser

1) Before you could run the TRILOGI Applet in a web browser, make sure
that the TLServer 3.15 is already running.

4-2

2) Next, start up your Internet Browser. It should be either an Intermet Explorer
version 5.0 or later, Netscape Navigator/fCommunicator Version 4.5 or
later or Mozilla Firefox version 1.5 or later.,

3) Next, check the TLServer front panel for its IP Address. If you are running
TLServer on a PC without network connection it will probably show: IP
Address = 127.0.0.1:9080. If you have an Internet connection before
you start up TLServer, then you will see the Internet IP address of your PC.
If your PC has both a local area network connection as well as a direct
Internet connection, you will see two IP addresses being reported.
(Although localhost address 127.0.0.1 may not be reported but it is
always there as long as both the Client and the Server reside on the
same computer. Always use the localhost IP address 127.0.0.1 if
pboth the Client and the TLServer are running on the same computer.)

4) Now, simply key in the IP Address, including the port number in your
browser's "Address" (for IES) or "URL" (for Netscape) text entry area. For
localhost connection, enter:

http://127.0.0.1:9080

) Internet TRILOGI Home Page - Mozilla Firefox
File Edit WView Go Bookmarks Tools Help

<}II - Lll - @ @ E}'; [l http:/f127.0.0.1:9080/ & | @ Go ([CL

|) TRiPLC |) Banks | | Kalld | | DigitalR5 - Client Portal |) Others

Internet TRILOGI Version 6.0
Copynght (c) 2001-2003 Trnangle Eesearch International, Inc

Menu ltem Description
Run the Internet TRILOGI directly off your browser. Mo Local

5) The browser will now issue a HTTP request to the TLServer. Since no
flename has been specified, the default file in the web-server root
directory "index.html" is loaded. This HTML file is written in Javascript to
provide some other options. To start the TRILOGI as an applet, select the
appropriate option and the TL6Applet.jar file will be loaded from the
TLServer into your browser for execution.

Note: The TLServer's root directory is not the same as the PC's root
directory. In TLServer, the root directory is actually ot
"C:\TRiLOGI\TL6\public\". This is the directory where the
index.html and TL6Applet.jar file are stored and these files
are served to the web browser when you enter the TLServer's IP
Address as mentioned above. Visitors have no access to the

4-3

PC's file directory above the servers root directory so the
content of your other PC files will not be at risk of being exposed
to visitors to TLServer.

Disabling TRiILOGI Applet

If you want to prevent visitors to TLServer from loading TRILOGI
Applet at all, just remove the "TL6Applet.jar' file from the
directory: ""C:\TRiLOGI\TL6\public\". In that case you can
only access the PLC using the TL6 application program.

4-4

Chapter 5: Ladder Logic Programming Tutorial

I. Your Assignment: Creating Your First Ladder Logic Program

In this tutorial, we would like to create a simple program as shown below:

&% i-TRILOGI Version 6.20 - [C:\TRILOGINTL 6\usrisamples\Demo.PC6] - (Sour... [= |[B[X]
File Edit Controller Simulate Circuit

Circuit# 1

| stant

[Ha M] —C o] = aa[=g =t FH e /] 2 [» BN

Run

o

{FLY}
Duration
LTI

Seql
[Avsed)

ot

{QUT)
outa
———(OUn

out2
{OUT)

oty
———{OUT)

out3
{OUT)

Quts

—{OUT)

it

{ouUT)
Cuts

——{OUT)

EventCount

1 idcusF: 7
2

Simply follow the steps below to create your first ladder logic circuit.

1. Open pull-down "File" menu and select "New".

5-1

. You should now be in the "Browse" mode of the logic editor. The vertical

line on the left end of the screen is the "power" line. The cursor is at the
position where you can key in your very first ladder logic.

Before we commence the circuit creation, let us define the 1/Os to be used
in this program. The following I/Os are required:

£ /0 Labels

Inputs . Start, Stop, Manual, Step

Outputs : Outl, Out2,.... Out8 3 T Label

Relays : Run FhE e

Timers . Duration E%EE <
. Manial

Sequencer : Seql S Step 0

Open up the I/O label-editing Window by pressing
<F2>. (Although you can also click on "Edit" menu
and select the item "l/O Table" to achieve the same,
we strongly recommend learning the hot key F2 as it
is offen much more convenient to use).

Scroll to the "Inputs" window by using the left/right
cursor keys or by clicking on the red color left/right
arrow buttons or simply select it from the choice box
pbetween the left/right arrow butffons.

= = o = -

Move the deep blue color highlight bar to Input #1 position by clicking on
it. Click again to open up a text field for entering the name for Input #1.
Enter the name "Start" for Input #1. Press <Enter> key to accept the name.
The text field will be closed and the name "Start" is now assigned to Input
#1. If you made a mistake, simply press the "spacebar" or click on the
input location again to edit it.

Press <Enter> key again and the highlight bar will be moved to Input #2.

. Without using the mouse button, simply start typing the name "Stop" at
Input #2. The text field will be automatically opened up at Input #2 for
entry. Press <Enter> after typing in the name for "Stop" input.

Complete entries of the other two input label names "Manual" and "Step"
as above. Note that TRILOGI Version 6.2 and up allows 1/O lalbel names of
up to 16 characters. However, if you wish 1o keep compatibility with Version
5.x to 6.1x, you should use no more than 10 characters to define the I/O
names. Also, white spaces between names are not acceptable and will
be automatically converted to the underscore character (' '). e.g. If you
enter the name: "F series PLC" for an I/O, it will be accepted as "F_series P".

5-2

10.

11.

12.

13.

After entering lalbbel names for Inputs #1 1o #4, move 1o the "Output" table
by pressing the right cursor key or by clicking on the right arrow button.
Enter all the output and relay lalbel names in their respective |/O tables. We
will discuss the "Timer" table in the next step.

Important Notes

a) You can shift the tems in the I/O table up or down or insert a
new label between two adjacent, pre-defined labels. Simply
press the <Ins> key or Right-Click the mouse button to pop
up the "Shift I/O" menu, which allows you to shift the selected
I/O. However, please note that if you shift the I/O down, the
last entry in the 1/O table (e.g. Input #256) will be lost.

p) InTrlogi 6.2 and up, shifting of Custom Function Label names
will now shift the function content along with the lalbbel name.
(In previous versions of Trilogi, shiffing of the I/O label would
not shiff the function content, therefore making it untenable
to use I/O label shift to reorganize custom functions. Warnings
are provided if such an action were 1o result in overwriting of
an existing custom function.

c) TRILOGI Version 6.2 and up allows I/O label names of up to
16 characters. However, if you wish 1o keep compatibility with
Version 5.x to 6.1x, you should use no more than 10
characters to define the /O names.

Timer fable has an extra column "Set Value" £ 1/0 Labels
located 1o the right of the "Lalbel Name"
column.

‘ Lahel Marne |Eet\!alue |

)
=
=
o
=
=]
=]
—
=
=]
=]

After you have entered the label name
"Duration" for Timer #1, a text entry box is
opened up at the "Set Value" location of Timer
#1 for you to enter the SV for the timer. SV
range is between 0 and 9999. Enter the value
1000 at this location.

=-d| T +

For a normal timer with 0.1s fime base, the value 1000 represents 100.0
seconds, which means that the "Duration” timer will time-out after 100.0
seconds. If the timer had been configured as "High Speed Timer” using
the TBASIC "HSTimer" command, then the fime-base would become 0.01s,
meaning the value 1000 represents only 10.00 seconds.

5-3

14, We are now left to define the sequencer, "Seqgl". The sequencer is an
extremely useful device for implementing sequencing logic found in
many automated equipment, TRILOGI supports 8 sequencers of 32 steps
each. Each seguencer requires a "Step counter' 1o keep track of the
current step sequence.

The first 8 counters in the counter table also double as the step counters
for the 8 sequencers. These counters must be named "Seq1" to "Seq8" if
they are to be used as sequencers, i.e. Counter #1 to be named as
'Seql", Counter #2 as "Seqg2", etc. However, any counter not used as
sequencer may assume any other name (up to a maximum of 10
characters) if they are used as ordinary counters.

15. If you are at the "Timers" table, pressing the right cursor key again will bring
up the "Counters" table. Enter the name: "Seql1" at the label column for
Counter #1. Press <Enter> and the text entry field will be opened at the
"'Set Value" column. For now, lef's enter a preset value of "4" for "Seq1".

16. We have now completed defining the I/Os, timers and counters. Press the
<ESC> key to close the counter or other tables. Note that not all labels
need to be defined before programming. You may create the label
names any time during circuit creation by pressing the <F2> hotkey.

17. We are ready to create Circuit #1 as shown below:

Start Stop Run

b— K b2 (RLY)
Run Duration
| ———(Ti)

18. With the circuit pointer (red color triangle) at Circuit #1, press the
<Spacebar> to enter the "Ladder Edit" mode. You can also enter the
circuit edit mode by double clicking at Circuit #1.

E i-TRILOGI Version 6.20 - Untitled
File Edit Contraller Simulate Circuit Help

Gircuit#t | [[A e = o] = e =g g F [T o[» BN vo Table | open Cusfn |

| L

=

5-4

19.

20.

Once you enter the "Ladder Edit" mode, a row of ladder element icons
appear along the top of the main TRILOGI window just below the pull
down menu. The following is a description of each item. A yellow color
highlight bar, which you can move 1o select an element in the ladder
circuit, will appear.

<1> - Left click to insert a normally-open series contact.
<2> - Right click to insert a normally-closed series contact.

<3> - Left click to inset a N.O. parallel contact to the

=

highlighted element
<4> - Right click fo inset a N.C. parallel contact to the
highlighted element
<b5> - Left click to insert a N.O. parallel contact to enclose one
or more elements.
<6> - Right click to insert a N.C. parallel contact to enclose one
or more elements.
<7> - Insert a normal coil which can be an output, relay, timer
! or counter.
<8> - Insert a parallel output coil (not an entire branch) to the
g current coil.
T <9> - Insert a special function coil which includes execution of
: CusFn
]| <O> - Insert a parallel special function coil to the current coil.

</> - Invert the element from N.O. to N.C. or from N.C. to N.O.

<7 > - Convert the element to a rising-edge triggered contact
(one shot)

Click to move the highlight bar to the right (same effect as
E pressing the right arrow key). This can be used to move cursor to
a junction that cannot be selected by mouse click.

f

Double-click to delete a highlighted element.

Now insert the first element by left clicking on the icon. The icon will
change to a bright yellow color to show you the element type that you are
creating. At the same time, an I/O table should appear on the screen with
a light beige-color background instead of the normal light blue
background. The I/O table now acts like a pop-up menu for you to pick
any of the pre-defined label names for this contact.

The contents in the table are not meant to be edited at this moment.

Scroll to the 'Input" table and click on the label name "Start" and a
normally open contact will be created at Circuit #1.

5-5

EE i TRILOGI Version 6.20 - Untitled
File Edit Controller Simulate Circuit Help

_ Circuit # 1 | — |—1| '—| I—'3| = |—5| — 3?] Ly 33| —[Fn]9| I_[F”]n|_i|f|_—.f|_—||.|¢|_—ﬂm 'O Table | Open CusFn |

Start)

po—]

If you observe the highlight bar carefully, you will notice a dark green color
square at the right end of the highlight. This indicates the insertion location
where a series contact will be attached. You can change the inserfion
location to the left or the right of the highlight bar by pressing the <SHIFT>
key.

21. Next, create the contact "RUN" which is parallel to the "Start" contact by

left clicking on the icon. The I/O table will appear again. Scroll to
the "Relay" table and select the "RUN" relay.

22. To insert the normally closed "Stop" contact in series with the "Start" and
"Run" contacts, you need to move the highlight bar to the junction of the
"Start" and "Run" contact. First click on the "Start" contact to select it. Then

click on the E icon to move the highlight bar to the junction, as follow:

File Edit Controller Simulate Circuit Help
R | = =] H s 8] — 07— 3 3B D1ahes
Start

M P — - |Inputs Lj

RU[:# # | Label Mame |

El Star A
Stop
Manual

4 SteE

23. Next, right-click on the icon. It will change into yellow color normally
closed confact as shown in the above diagram. You are now inserfing a
normally closed series contact at the location of the highlight bar. Pick the
"Stop" label from the "Input" table to add the series contact.

5-6

24,

25.

26.

27.

28.

29.

We will now connect a relay coil "Run" to the right of the "Stop" contact.

Click on the icon to insert the coil. Select "RUN" label from the
"Relay" table. Remember that an input can never be used as a cail.
Fortunately, TRILOGI is smart enough not to call up the "Inputs" table when
you are connecting a coil, to avoid unintentional errors.

Noftice that the coil symbol ---(RLY) indicates that this is a relay coil,
which is helpful in identifying the function of the coil. TRILOGI automatically
places the coil af the extreme right end of the screen and completes the
connection with an extended wire.

Right below the relay coil is a parallel timer coil with lalbbel name "Duration”.
To create this coil, click on the icon. This allows you to connect a
parallel coil to the existing coil. The "l/O" table will pop up for selection
again. Since we want to choose a timer, scroll o the "Timer" table and
pick the first fimer with the label "Duration" to complete the circuit.

Press the <Enter> key once to complete Circuit #1

Congratulation! You have just successfully created
you very own ladder logic circuit. It is that simple! Now

press <Ctrl-S> keys to save the file to the hard disk.

We will now create Circuit #2 as shown below.

‘ Run Step Manual Seql

I; I I Avsedl
Clk:0.55 ManLal
| e

Follow the steps #20 o #23 fo create the following circuit fragment:

ﬁ i-TRILOGI Version 6.20 - Untitled
File Edit Controller Simulate Circuit Help

_Gireut#2 | []] =] s o o[Z | e o[v B

RLIM Step Manual
b I Ir1 e I Ii4 0 I Ii3

5-7

30.

31.

32.

33.

We want to enclose the two series contacts "Step" and Manual" with a
parallel branch that contains two elements. First, we will create the branch
for the N.C. "Manual" contact.

Click on the element "Step" to highlight it. Then right-click on the
icon to create a N.C. parallel circuit that encloses both the "Step" and the
"Manual" contacts. A cross will appear at the left hand end of the "Step"
contact, indicating that this is the starting location of the parallel circuit.
You should now click on the "Manual' contact to select the ending
location for the parallel circuit. The yellow highlight bar will be positioned
at "Manual" contact now.

You will notice that the icon has now changed into a yellow color
N.C. contact iTh an opposite connection arm. You should now

click on the symbol to close the parallel branch. (One possible short-
cut method is to double-click at the ending location to close the branch).

As usual an I/O table will be opened for you 1o select the I/O. For now,
select the "Manual" label from the "input' table to create the following
circuit:

E i-TRILOG] Version 6.20 - Untitled
File Edit Controller Simulate Circuit Help

cireuit#2 | [[L e —] oe] e g 2 | T e
RLIK Step Manual
r— e |
Manual
B

Next, we want fo insert the special bit "Clk:0.5s" Ry ITeE

to the left of the "Manual' contact. Press the | specialBits =] »
<SHIFT> key to move the insertion point to the
left end of the highlight bar as shown above. l#- ame [~
Then lefi-click on the [AEiicon to create a Em tgﬂﬁ'ﬁON
normally open contact. Scroll the /O table to 0.01s Clock
the "Special Bits" table and select the item: "0.5s Dhas Clock
Clock'. The parallel branch would have been 01s Slock
completed by now. ?gg g:ggt
EEl 1 min Clock
EFE| FTC Error Z
< >

5-8

34.

35.

36.

Note: The "Special Bit" table comprises some clock pulses and some other
special purpose bits. These include the eight built-in clock pulses in the
system with periods ranging from 0.01s o 1 minute. Built-in clock pulses
are useful if you need a time base to create, for example, a "flashing
light". A contact such as "CIk:0.1s" will automatically turn itself ON for 0.05s
and then OFF for another 0.056s and then ON again, resulting in a series of
clock pulses of period = 0.1 second.

Next, move the highlight bar to the right end junction of the parallel

circuits using the cursor keys or the E icon. You can also try fo move the
highlight cursor to the junction by clicking on the junction itself, as follow:

%% i-TRiLOGI Version 6.20 - Untitled
File Edit Controller Simulate Circuit Help

| circuit#2 | [[S e —Cod =g et e[F [D v BN

| RUN Step Manual
> P | & | |
CIkD.55 Manual |
| | w

Now, click on the icon to insert a special function coil. A popup
menu will appear for you to select the desired special function. Click on
the item "4.[AVseq]-Advance Sequencer" to insert the Advance Sequencer
function [AVseq].

Select a Function

. [CusFn]
. [dCusF
. [MaR5T]

Custom Function
Diff. Up Custom Funcs
Master Reset

1. [DHCtr] Decrement Rev. Counter
2. [R3Ctr] - Beset Counter

3. [UpCtr] - Increment Rev. Counter
4, [AVseqg] - Adwvance Sequencer

5. [RSseg] - Eeset Segquencer

6. [Stepl] - Set Sequencer to Step #N
7. [Latch] - Latching Belay/lutput
8. [Clear] - Clear Latched Eelay

9. [ILock] - Interlock Begin

L. [ILoff] - Interlock End

B. [dDIFU] - Differentiate Up

C. [dDIFD] - Differentiate Down

D

E

F

This function is one that will increment the step counter of Sequencer #1
each time ifs execution condition goes from OFF 1o ON.

Again, remember to press the <Enter> key to complete Circuit #2

5-9

37.

38.

39.

40.

41.

Circuits #3 to #6 are similar to one another. They make use of the
Sequencer to turn on the Outputs 1 to 8 to create a pattern of "running
lights" when executed. The label "Seql:1" of the contact in Circuit #3
represents Step #1 of Sequencer 1. Remember that each sequencer
can have up to 32 steps (Step #0 to 31), with each step individually
accessible as a contact. A normally-open contact "Seql:1" will be closed
whenever the step counter of Sequencer 1 reaches numiber 1. Likewise a
normally-closed contact "Segb:20" will be opened when the step counter
of Sequencer 5 reaches number 20.

‘ Seql: ot
i (ou)

Quts

—{OUT)

To create the normally-open contact "Seqgl:1", left-click on the
icon. When the |/O table pops up, scroll to the "Special Bit" table and
select the item #1 "SegN:x". When prompted to select a sequencer
choose "Sequencer 1" and another dialog box will open up for you to
enter the specific step number for this sequencer.

We have thus far been creatfing ladder circuits only by clicking on the
ladder icons. A short-cut method of choosing elements to be created
without using the mouse does exist. Observe the icon carefully and you
will nofice a small numeral at the lower right hand corner of each icon
that corresponds 1o the shortcut key. You may wish to try this short cut for
the remaining part of Circuit #3. Press the <7> key and the Output table
will immediately pop up for selection of a coil. Pick "Out1" from the
"Output" table and the "Out1" coil will be connected.

Circuits #4, 5 and 6 are very similar to Circuit #3 and you should have
lifle problem creating them. Next we are going to create a circuit
containing a special function called "Custom Function”, as follow:

‘ Seql:d EventCount
p‘ | | 1 {dCusF}

After you have created the “Seql:4” contact, click on the icon and
select the item “E. {dCusf} — Diff. Up Custom Funcs” from the popup
menu to connect to a Custom Function coil that is “differentiated up”
(also known as one-shot — meaning that the custom function will only run
ONCE when the contact "Seq1:4” goes from OFF to ON).

5-10

42,

43.

The "Cust Func” table will popup and you should click on the first custom
function area on the table. Since we have not previously defined a name
for this custom function, TRILOGI will prompt you to define a name for the
chosen function. Please enter “EventCount” in the text field as follow:

£ Define Label Name

Cust Func #2 | EventCoun

Note: For custom function only, it is possible to create a custom function
without defining its lalbel name. If you leave the text field empty the
program will give the custom function a default name: Fn_#n
where n is the function numiber which varies between 1 and 256.

With the cursor still in “Ladder Edit” mode, right click on the newly created
{dCusF} coil and a custom function editor window will open up for you to
enter the TBASIC language statements that define what this function is
supposed to do when it is run. Please enter the following statements:

E Custom Function #1 - EventCount

— Control
X = X+1 ! Initial wvalue of X = 0 L . -
SETHEE 1,1,"Cycle Count = "+STR$ (X) 1 Find Find All
1-EventCount
4] li | | | Rename Function
Order/Sales +1-B77-TRI-PLCS / +1-B77-874-7527 |~
- 4
U"R% Inquiry: (8:30am to 5:00pm PST; Mhon-Fri) | |12 e -
B Undo || Abort
Ie—— o1 e el e

In the above custom function we are using a TBASIC command called
"SETLCD” to display some alphanumeric text on a PLC’'s LCD display. To
get help on the syntax of this command, you can highlight the
command itself and then press the <F1> key to instantly bring up the
help file for this command. This makes it very simple to check the syntax
of any command. Alternatively, you can also go to the “Help” menu and
select “TBASIC Keywords” to obtain help for any TBASIC commands.

5-11

44,

45,

After you have entered the TBASIC statements, please close the editor by
clicking on the [x] box or press the <ESC> key. When you have finished
creating all the circuits, press <Enter> key or <ESC> key at the last blank
circuit to end "Ladder Edit" mode and we are ready for some interesting
simulation exercises.

We can make our program more comprehensive to other users by
utilizing the "Comments" feature of TRILOGI. Open the "Circuit" menu and
select "Insert Comment". A comment editor window will be opened up 1o
allow you to add your comments to any part of the circuit. When you are
done with your comments, just press <ESC> key or close the comment
editor window and the comments you just entered will be inserted
between the circuits. Each comment occupies a circuit position and
there is no Iimit to the number of lines a comment circuit may have.
(However, if you wish to keep data file compatibility with the old DOS
TRILOGI Version 4.x you should limit the comment to no more than 4 lines
per comment and each line should contain no more than 70
characters.)

A comment circuit may be moved around or deleted just like any other
ladder circuits. If you wish to edit the comment, just double-click on it or
press the <Spacebar> to open up the comment editor window. You can
use the normal text editing keys such as left, right, up, down cursor keys,
and <Ctrl-Left>, <Ctrl-Right>, and <Backspace> keys for editing
the comment text.

Testing Your Ladder Logic Program Using The Simulator

The stage has been set and the show is ready! Having completed the demo
program, it is time to fest if it works as intended using the built-in real-time
programmable controller simulation engine. Open the "Simulate" pull-down
menu and activate the command "Run (Al I/O reset) - Cirl+F9". TRILOGI will
immediately compile the ladder program and if no error is detected, it will
instantly proceed to open up the "Programmable Logic Simulator' screen, as
shown below:

5-12

B=)E3

ADC1-8 | | | | | | | | L View Control ¥ Pause
Ingput Tirner Counter Relay Output Reset
F Start el | Duration | EEE el # | | I Fun |H outl s
N stop — | = | — | — B tutz =

= Marmal EN = . EN B ot
E step 4 4 4 [0t
] El (5] EN 5 outs
& B B B B (ks
- [| [| [N 7
=0 - - & B uta
=N [[[En
0 o o o "o
11 M1 11 M1 1
12 [12] [12 12 12
13 13 13 13 =
14 14 14 14 14
15 || HEH + || HEH + || Sl + | | Sl v
A — A — A — A- — A —
£ | > £ > £ > £ | * £ | >
— — — — — — — — —

If you have followed closely all the instructions during the creation of the
demo program, you should not encounter any compilation error.
However, if you do receive an eror message, then please check your
circuit against the picture shown onpage 5-1, then make all the
necessary corrections and try again.

The simulator screen comprises 5 columns: Input, Timer, Counter/
Sequencer, Relay, and Output. With the exception of the Relay table that
contains up to 512 elements, and the Timer table that contains up to 128
timers, all other columns contain 256 elements each. Every column has
its own vertical scroll bar. You can use the mouse to scroll each column
independently to locate the desired |/O.

The label names for the inputs, outputs, relays, timers and counters
defined earlier in the /O tables automatically appear in their respective
columns. To the left of each label name column is an "LED" lamp column
that indicates the ON/OFF state of respective 1/O. A red color lamp
represents the ON state of an /O, whereas a dark gray color lamp
represents an OFF state. The I/O number is indicated in the middle of the
lamp.

The simulator requires the use of the mouse to work properly so it is
important to remember the mouse button actions as follow:

Turn ON the I/O when pressed.
Turn OFF when button is released.

Toggle the I/O when pressed once.
(l.e. OFF becomes ON and ON become OFF)

Left Mouse Button

Right Mouse Button

5-13

Our ladder program requires us to "push" the "Start" button momentarily.
You can simulate this action by moving the mouse pointer to the "Start"
label (or the LED lamp) and press the LEFT mouse button once and then
release the button. The action starts!

At this time, notice that the relay "RUN" is latched ON and the timer
"Duration" begins to count down from the value of 1000 every 0.1sec,
and the Output #1-#8 are turning ON/OFF sequentially in a "running light"
paftern. Sequencer "Seql" in the "Ctr/Seq" column begins to count
upward from 1 to 3 and then overflows to 0 and repeats continuously. For
each step of the Sequencer, the corresponding Output will be tfurned ON.
Our demo program will show a running light pattern starting from Outputs
1&8,then2&7,3&6and4 & 5andthenbackto 1 &8, 2 &7.....

Now you should verify that the logic works as intended by observing the
ladder diagram. You should nofice that the "Run" labels in all circuits are
highlighted as shown below:

EE i-TRILOGI Version 6.20 - [C:\TRILOGIVTL 6\usr\samples\Demo.PCs... [= |[B][X]
File Edit Controller Simulate Circuit Help

_ciruit#1 | [DENENENE Detne cuick Tags | (EETN
Start Stap

- I I” | |'2 {FLYY
Duration

rl —{(TIh}

Step Manual Seq1
1 | 2 s

Clk:0.5s Manu?.al
| | |
[

(OUT)

S—TTT -

The logic states of any I/O can be displayed on the ladder diagram
directly. An Input, Output, Relay, Timer or Counter contact that is turned
ON will have its label name highlighted in the ladder diagram. This
feature helps greatly in debugging and understanding the logical
relationship between each 1/O. For example, from the above figure, we
can see clearly that the "Self-latching" circuit for relay "Run" works as
infended: when we first turn ON the "Start" input, "Run" will be energized
and its contact which is parallel to "Start" will hold itself in the ON state,
even if we subsequently turn OFF the "Start" input by releasing the button.

5-14

10.

11,

12,

13.

14,

The timer coil "Duration’, being connected in parallel o "Run” relay, will
also be energized. However, its contact will only be closed after 100
seconds (when its present value counted to 0). To break the latched On
"Run" relay, we must energize the "Stop" input momentarily to break the
"oower" flow. Try it now.

Let's restart the system by tumning ON the "Start" input momentarily again.
Next, we want to turn ON the "Manual" input. Move the mouse pointer to
the "Manual" input and then press the right mouse button. "Manual"
input will be stuck at "ON" state even after you have released the right
mouse button. Click on "Manual" button using the right mouse button
again and it will be turned to OFF.

When "Manual" input has been tumed ON, the running lights should stop.
This is because the normally-closed contact of the "Manual" input in
Circuit #2 is now tumned OFF and the 0.5s clock pulse could not frigger
the [AVseq] function anymore.

If you now left-click on the "Step" input, the running lights will move one
step at a time in response to your mouse click. Observe the Seqlx
contact with respect to the counter value of Seql and the logic of this
circuit become very clear instantly.

Observe that the timer "Duration" continues to count down every 0.1
second, and when it reaches 0, the "Duration" output coil label will be
highlighted. You can use this timer to stop the program by connecting a
N.C. "Duration" contact to Circuit #1. This is left as an exercise for you!

Next, please left-click the Y| button to bring up the “View Variable”
window as shown in the next picture. This panel displays the values of all
the 32-bit intfeger variables A to Z, some ADC, DAC, PWM readings and
the PLC's real time clock values. Also, near to the lower right is a
simulation of the LCD panel, which simulates what will be shown on the
LCD display when a “SETLCD” command is executed. (Note: Only ASCII
characters below 127 can be faithfully simulated on LCD. ASCI
characters above 127 will appear differently on the SIMULATOR from that
shown on the actual LCD).

5-15

15.

£ ViewVariable - Integers

=10 E=0 C=0 o=0 E=0
F=10 G=10 H=0 I=10 T=10
E=0 L=1D M=l H=0 o=0
r=10 Q=10 BE=0 g=0 T=0
=1 v=10 W= 0 =190 T=10
z=0 HzC1l=0 H3Cz=0 HzC3=0

CH# 1 = = <4 5 = 7 2
ADC 1-2 |0 0 0 a0 a0 0 o 0

2-15 |0] 0 0 0 0] 0
DAC 1-2 |p 0 0 0 0 0 0 0

2-15 |0 0 0 0 0 0 0 0
MM 1-2 g 0]]] 0 i}]
[Date: ZO0ESE/5 4 lines LCD Display
Time: 13:50:31 Cycle Count = 20
Dy Mon
LED

Hex | Edit | Close | 4 | » |

In our custom function “EventCount’, we have defined the following
statements:

X = X+1 " Initial value of X = 0
SETLCD 1,1,"Cycle Count = "+STR$(X)

The first statement will add 1 to the variable X every time the custom
function "EvenCount” is run, and the second statement will show the
value of X on the LCD display. Since this custom function is called only
when the contact “Seq1:4” goes fromn OFF to ON, X effectively counts
the number of complete cycles the sequencer has gone through. You
can see the value of X changes every complete cycle of the running
light and the value is also displayed on the simulated LCD panel.

There you have it! You have just completed creating your first LADDER+BASIC
program and simulated its action on the TRILOGI built-in Simulator and you are
now ready o see how the actual program will behave in the real world PLC.

lll. Transferring Your First Ladder Program To The PLC

After having tested your ladder logic program on the simulator, you are
probably eager to fry out the program on the actual PLC! Here are the quick
steps:

1.

Connect the DB? programming cable from the PC COM port to the PLC's
COMMT port. Then Connect power to the PLC.

Run the “TLServer” as described in Chapter 3. TLServer must be running
before you can have any kind of communications with the PLC.

5-16

Click on the “Setup Serial Port” button and test the communication with
the PLC by entering the "IR*" string into the "Command” box. You should
receive an "IRO1*" response from the PLC (provided the default ID=01 has
not been changed). If you face any communication problems with the
PLC then you will have to froubleshoot it first by making sure that (a) the
correct COM port is used, and (b) no other program (e.g. a PDA cradle) is
currently controlling the COM port that is used with the PLC.

Next, click on the “*Confroller” menu and select “Program Transfer o PLC".
You will be asked to login to the TLServer. If no one has changed the
default info you should see the following screen:

Login To TLSever X
Senver's IP Address:port

| DetectiD | [

(1 PLC COnlyy ID (Hex)
f+ilocalhost- 127.0.0.1:90800 [Use Hitp Proxy Server

Username: |53mD|ES

Password: |

v Memorize Username & Password

Cancel oK

The “Server's IP Address:port” text field allows TRILOGI to login to any
remote or local TLServer or Xserver simply using the IP address and port
number of these servers. Since TLServer and TRILOGI are often running on
the same PC, for users convenience there is a predefined default IP
address “Localhost-127.0.0.1:9080 which should be used when both
TLServer and TRILOGI client are running on the same PC. There is also a
default user defined in TLServer with the username “samples” and no
password which is what we will use for now.

Next, click on the “Detect ID” button. If all go well the ID ‘01" will appear in
the box next to the “Detect ID” button. Otherwise you will receive an error
message that explains what did not go right.

If you have received an ID correctly, you can then click the “OK” button.
TRILOGI will compile the program and then begin transferring the
compiled codes into the PLC. Just follow the steps on the screen until the
entire program transfer procedure is completed. Then click on the “Yes”
button when you are asked if you wish 1o "Reset all [/Os?”.

Before you actually turn on the physical inputs to the PLC to test the
program, we would like to show you how you can actually control the
PLC's I/O from TRILOGI software. First, click on “Controller” menu and select
"On-Line Monitoring”. You should see the “Full Screen Monitoring” window

5-17

10.

11,

12,

that looks identical to the “Programmable Logic Simulator” screen that
you have seen earlier while testing your program on the simulator.

The logic states of the inputs, outputs, relays, fimers and counters that you
see on the “Full Screen Monitoring” screen are linked to the PLC’s actual
inputs, oufputs, relays, timers and counters. When performing on-line
monitoring, TRILOGI software continuously sends out serial communication
commands to retrieve the data from the PLC and display them on the
screen.

Next, ensure that the “Control” check box on the monitoring screen is
checked (selected). You will now be able to remotely trigger any of the
PLC’s input by clicking on its label name. Try to click on the "Start” input
once and you should see the running lights on the PLC outputs. Click on
the “Stop” input and the running light should pause. The running light will
also be reflected on the “Output” column of the “Full Screen Monitoring”
window.

Please note that when you click on an input label, TRILOGI actually only
manages to change the input bit for only one scan time. Thereafter the
PLC will update the “Input” bit using the actual logic states of the physical
input.

Next, pause the PLC by pressing the "Pause” bufton. You should see that
the “Pause” light on the PLC being turned ON. Now, you can actually turn
ON the physical outputs or internal relays of the PLC by clicking on any
outfput label using the LEFT mouse button. Releasing the LEFT mouse
button on the output will turn it OFF. You can even latch ON or OFF an
output by clicking on the label using the RIGHT mouse button. Try it — it
can be fun!

Summary

We have completed this tutorial and have successfully created a simple
ladder + BASIC program. We have also performed real time simulation to
test the program's functionality and have transferred the demo program
info the PLC via the TLServer. By now you would probably have a good
appreciation of TRILOGI's superb capability and ease of use and are ready
to include TRILOGI as an integral part of your programming needs!

For more Ladder+BASIC examples, you should click the “File” menu and
select "Open (Local Drive)”, and then open example program files under
the “TRILOGNTL6\usnsamples” folder. There are many well-commented
sample programs in this folder that you can open and run simulation to
better understand how the LADDER+BASIC programming language works.

5-18

Chapter 6: TRILOGI Ladder Logic Editor Reference

TRILOGI's ladder logic editor window lies between the main menu bar along
the top of the screen and the help message line along the boftom of the
screen. The cursor will appear in the window whenever you are in the logic
editor. The ladder logic editor comprises two modes: the Browse mode and
the Circuit Editing mode.

. The Browse Mode

You are normally in the browse mode when you start up the program. The
pbrowse mode allows you to manipulate a ladder logic circuit rung as a
single entity: you can view any circuit, make copies of it, move it 1o another
location or delete it entirely. Each complete ladder logic "circuit" is given a
circuit number. You should see a small red color marker showing you the
currently selected circuit. The circuit number of the selected circuit is shown
on the upper status line as "Circuit # xxx "

1. Mouse Actions

Since TRILOGI Version 6.x runs under windowing environment, all usual
mouse action applies. You can grab the verical scroll bar to scroll to your
desired circuit and click on it to select it. Double-clicking on a
circuit enters the Circuit-Editing Mode, which will be described later.

2. Keyboard Actions

The functions of various keys in the browse mode are explained below:

Allow you to enter Circuit-Editing mode for the

<Spacebar> currently selected circuit. If the selected circuit is @
comment circuit, the comment editor will be opened
automatically.
<F1> Activate the help function to display on-line help.
<F2> Open the I/O Table to create the I/O label name
Turns ON/OFF display of the I/O type and the physical
<F3>

I/O number for ladder logic contacts on the screen
(The physical /O number is now linked to the
labelname). All ladder logic contact symbols are
normally identified by their label names. However, you
can also display an optional small literal to indicate
the 1/O types and number. e.g. il=input 1,
ol2=output 12, r25= relay 25, t1= timer 1 and
cb=counter 5.

6-1

<F5> Refresh the display. If for some reason the screen is
garbled by an incomplete circuit display, you can just
press the <F5> key to redraw the screen.

Open any custom function. If the currently selected

<F7> S . .))
circuit contains a custom function, then it will
e opened for editing. Otherwise TRILOGI will ask you to
select a custom function # from a menu.

<F8> Compile the TRILOGI program to show the compilation
statistics.

<F9> Run the simulator without resetting any 1/O

<Ctrl-F9> | Reset all I/Os and then runs the simulator.

<Ctrl-F8> | Reset all I/Os except inputs and then runs the simulator.

Use the up/down cursor keys to move the marker to
other circuits and the "Circuit #" display at the upper

<Up>/<Dn> , > M
<PgUp> status line will simulfaneously reflect the change. If you
<PgDn> affempt fo move beyond the screen, the logic editor

screen will scroll. The <PgUp> and <PgDn> keys can
e used to scroll one page at a fime.

3. Navigating Circuits in Browse Mode

Although most of the time you will probably be navigating the ladder
circuit diagram using the scroll bar or cursor keys to find the circuit that
you are looking for, there exist several short cuts to enable you to quickly
jump to specific circuit in the program. E.g. If you click on the

_ cireuit#1 | you will be prompted by a “Goto Circuit” dialog box to enter
the circuit number to jump to immediately. You can also call up the
"Goto Circuit” dialog by pressing <Citrl-G> key anytime.

If you have a large ladder program with multiple rungs of circuits, then
you will find the “Quick Tag” feature very useful for quickly jumping from
one circuit to another. The quick tags appear as blue buffon along the

top of the TRILOGI editor windows: - ENEVENEIB you can define up o
five “quick tags” by clicking on |Define QuickTags |, each tag corresponds to
a specific circuit #. By default all 5 fags points to circuit #1. Once you
have defined the circuit # for a tag, then when you click on the quick
tag button the editor instantly jumps to the pre-defined circuit number.

When you click on |Define Quick Tags | the following window will appear:

6-2

£ Quick Tags Definition and Selection

Tag Mo, Circuit# Description

5 j |1 Change

Furmp Start

0008
R
=

You can select the "Tag No.” either from the choice box or by clicking on

the blue tags , B . Then enter or edit the circuit # fo associate with
the selected tag. You can optionally enter/edit a description for the tag to
help you recall the purpose of that section of ladder circuit with which the

tag is associated. Then click the "% putton to update the circuit #

and description at the corresponding tag location.

NEW! In Trilogi version 6.2 and later the quick tags you have created will
e displayed in the corresponding ladder circuits. New programs created
will set all the quick tags to a default value of 0 so that no quick tags are
displayed until they have been manually created.

NEW! In Trilogi version 6.2 and later there is a feature that allows you to
immediately go the last circuit that was selected. This is implemented by

clicking on the E=EE button that is located beside the quick tag buttons,
which are described above. Whether you move to a new circuit by using
the "Goto Circuit" command or a "Quick Tag" or just by clickihng on @
circuit with the mouse, the "Last" button will rememiber your last circuit
position. This also allows you to easily switch back and forth between two
circuits an unlimited number of times because if you don't select a new
circuit after pressing the "Last" key, you will go back to the circuit you
came from.

Note: The Quick Tags definitions are saved along with the program body
into the “.PC6" file. This means that the quick tags that you defined
for a particular program can be recalled later when you open ifs
" PCo" file.

6-3

4. Using the Circuit & Edit Menu

The “Circuit” and “Edit” menus contain various commands that you may
need for adding comments, copying or delete circuit as well as for re-
arranging the order of the ladder circuits. Please refer to Chapter 7 for
descriptions of the actions associated with each item in these menus.

#% i-TRiLOGI Version 6.20 - [C:\TRiLOGI\TL 6\usrisamples\Dema.PC8] - (Sou... [= |[B][X]

File Edit Controller Simulate §#
Circuit # 1
Start Insert Circuit Run LJ
s Ha s (FLY)
Rur Hove Circuit Duration
I IH Ayppend Circuit (TIN) J
[Delete Circuit
Fun TP E= Seql
| Ir1 | Ii3 [Avzed]
Manyal
Ho
Seql:1 Qutt
| | {OUT)
outs
L—(OLIT) ;]
« | | |1

File B=G[I® Controller Simulate Circuit Help

i abort Edit Circuit

Undo Ctrl+4Z i

e _ _ {RLY)
g Cut Circuit Ciuration IFE
Copy Circuirt Crrl+4C {TIM)
[Paste Circuit Ctrl+v
| Seq
— Find CLr 14F [Av'sed]
Goto CLrl+c
I/0 Table Fz2
:
i View IS0 Type on Ladder F3 A

{oUT)

s

—{OUT)

Edit Custom FunctionF?7

Clear Custom Function

6-4

[I. The Circuit-Editing Mode

TRILOGI comes with a smart editor that allows you to insert or delete a
single element within a circuit easily. The editor inferprets your circuit
immediately upon entry and prevents you from creatfing illegal circuit
connections. The functions of various keys in the circuit-editing mode are
detailed below. You know that you are in the circuit editing mode when a
row of ladder logic icons appears along the upper status line next to the
circuit number and a yellow color highlight bar appears which you can
move to select an element in the ladder circuit, as shown below:

E i-TRILOGI Version 6.20 - Untitled
File Edit Controller Simulate Circut Help
cirevit#t | [[LA] —C]] g e F] e[v

L

1. Mouse Actions

Left Click - When you click on an element using the left mouse button, the
element is selected and highlighted by the yellow color highlight bar.

Right Click - When you click on an element using the right mouse button,
you are allowed to directly edit the label name of the element. This can be
a convenient feature if you need to change one or two characters in the
name only. However, if the element is a custom function: {dCusFn}, or
{CusFn}, then the custom function editor will be opened for you to edit the
function directly.

Insert Ladder Element - You create the ladder circuit element simply by
moving the mouse pointer to the icon and pressing either the left or the
right mouse buffon to insert a ladder logic element fo the curently
highlighted element. The following is a description of the functions of each
icon. A yellow color highlight bar will appear which you can move 1o select
an element in the ladder circuit.

6-5

<1> - Left click to insert a normally open series contact.

el i <2> - Right click to insert a normally closed series contact.
<3> - Left click to insert a N.O. parallel contact to highlighted
element
<4> - Right click to insert a N.C. parallel contact to highlighted
element
<5> - Left click to insert a N.O. parallel contact to enclose one
or more elements.
5

<6> - Right click to insert a N.C. parallel contact 1o enclose one
or more elements.

<7> - Insert a normal coil, which may be an output, relay, timer
or counter,

<8> - Insert a parallel output coil (not an entire branch) to the
current caill.

<9> - Insert a special function coil which includes execution of
CusFn

<0> - Insert a parallel special function coil to the current cail.

JEEEN

</> - Invert the element from N.O. to N.C. or from N.C. to N.O.

<” > - Convert the element to a rising-edge triggered contact
(one shot)

7

Click to move the highlight bar to the right (same effect as
E pressing the right arrow key). This can be used 1o move cursor to
a junction that cannot be selected by mouse click.

Double-click fo delete a highlighted element.

When you click on an icon, for example, the , the icon will change to
bright yellow color to show you the element type that you are creating. At
the same time, an I/O table should appear on the screen with a light
beige-color background. The I/O table acts like a pop-up menu for you to
pick any of the pre-defined label names for this contact. This saves you a
lot of typing and at the same time eliminates typo errors that could result in
a compilation failure. You should spend a few minutes to follow the
"Chapter 5: Ladder Logic Programming Tutorial' on the steps needed to
create a ladder program.

As mentioned previously, the ladder editor is intelligent and will only accept

an action that can result in the creation of a correct ladder logic circuit.
Otherwise it will simply beep and ignore the command.

6-6

UNDO Circuit Editing

If you have wrongly inserfed or deleted an element and wish to
undo the mistake, you can either select "Undo" from the "Edit"
menu or press <Ctrl-Z> key to undo the last step. The undo buffer
stores the last 10 editing steps. You can also choose to abort all
the operations on the current circuit by selecting "Abort Edit
Circuit" to abort all changes made to the current circuit.

2. Create Ladder Circuit Using The Keyboard

Users of existing TRILOGI version 3.x or 4.x who are familiar with creating
ladder programs using the keyboard will be delighted to know that they
can still create their ladder programs using the keyboard. The keyboard
actions are described below:

Left/Right/Up/Down cursor keys

The cursor keys are for moving the highlight bar from one element to
another in their four respective directions. You can only move in a
direction that will end up with an element.

<ESC>

Press <ESC> key to end the circuit-editing mode and return to the
browse mode of the logic editor. All changes to the current circuit will
be saved. (if you wish to abort any changes to the current circuit,
please select “Abort Edit Circuit” from the “Edit” menu) .

<Enter>

When you are done with editing the current circuit, hit <Enter> to
proceed to the next circuit.

<SHIFT>

If you observe the highlight bar carefully, you will nofice a dark green
color square at the right end of the highlight. This indicates the
insertion location where a series contact will be attached. You can
change the inserfion location to the left or the right of the highlight
bar by pressing the <SHIFT> key.

The position of the cursor has no effect when you connect a parallel

contact to the highlighted element. The left terminal of the element
will always be connected to the left side of the parallel branch.

6-7

<0>to <9> , </> & <E> keys

Pressing the key <0> to <9> and </> is equivalent to clicking on
the icon shown in the table. The equivalent keyboard number is
shown as a small numeral at the lower right corner of the icon. The
</> key is the quickest way of converting a normally open contact
to a normally closed one (and vice versa).

Pressing the <E> key when a contact or coll is selected allows you o
edit the label name directly. Note that it is the user's responsibility to
ensure that the label is valid.

6-8

Chapter 7: TRILOGI Main Menu Reference

Both TRILOGI application and applet programs have nearly identical look
and feel (as shown below), with the exception that the applet can't save to
or load from local drive.

E i-TRILOGI Version 6. 20 - Untitled

File Edit Controller Simulate Circuit Help
circuit#1 | EDENENEE Detne cuick Taos |([[EEED
Start Stop =
»— I = (RLY)
Duration ||
rl L—(OLIT)
Step manual Sen
| Ir1 | II4 | II3 [Avseq]
ClkD.5s Manual
| HE e
<] | =]

The main body of the program window is for displaying and editing your
ladder logic program. A ladder logic program is made up of many ladder
"rungs”. In TRILOGI we call each ladder rung a “circuit” with an associated
“circuit number”. The currently selected circuit is marked by a little red
friangle pointed to the circuit’s infersection with the left vertical line (a.k.a.
the “power rail” in ladder logic terminology)

The circuit numiber of the selected circuit is displayed on a button located
just above the top left cormner of the ladder editor window. If you happen to
click on this button, a dialog box will popup that prompts you to enter the
circuit number that you wish to go to and the editor will bring you there

immediately. The five blue buttons - ENENENEE next 10 the Circuit #
button are called “Quick Tags”, the gray button [Define QuickTags | next o the
quick tags is used to create quick tags, and beside the gray button is
another blue button . The usage of all these buttons has been
covered in detail in Chapter 6.

File Menu

The File menu provides commands for the opening/saving of TRILOGI files
either on the local hard disk or on the TLServer's storage space.

1. New <Cird+N>

7-1

Activate this command when you want to create a new ladder logic
program. All current ladder circuits and custom functions will be cleared
from the screen and the default filename is "Untitled.pcé".

2. Save <Cirl+S>

This command saves the whole ladder logic program, all I/O tables and
all the custom functions to the disk. The current file will be saved to the
same source from which it was opened from, i.e. if a file has been
previously opened from the TLServer via the network, this command will
save the file back to the TLServer. Likewise, a file opened from the local
hard disk will be saved automatically to the local hard disk.

3. Open (TLServer 3) - <Cirl+O>

This command is for loading a TRILOGI file from the TLServer version 3.x.
When executed, you will be prompted to enter the Username and the
Password to gain access to the TLServer. (The same Username and
Password must have already been defined in TLServer for this to work). If
you are running TRILOGI as a local gpplication instead of as an
applet, you may be required to enter the "IP Address: port" of TLServer in
order to connect to a remote TLServer. (Note that last entry of IP Address:
port is saved to the TL6 configuration file and will be loaded when the
TL6 application re-starts).

Each user has his/her own exclusive directory for storing his/her TRILOGI
files. Once authenticated, a network file dialog will be opened for you to
select a file, delete a file or create a subdirectory, as shown below:

Open files stored at Tl Server _ Open files stored at Tl Server

Filename: |FiIeSewice_ru1ndems' Filename: | [|

Current Dir: Current Dir: XServer!

FileService Modem/ -~ Open [Open

HMT/ defineXHMILakel.PCE
I-7000/ GetIPRddr.PCE
ladderExamples/ Test¥server.PCé
¥Server/ Cancel Cancel
ADC.pcé -
Analog-Timer.PCE
backup. 001 Delete Delete
backup.002 —
backup.003

Blank.pcéh

Call.pcé

clock-zh.PCé

Clock.PCé

ClockPulses.pcé

CRC16.PCé
Demno-Protected.pch w

MkDir MkDir

7-2

Simply double-click on the desired file or select the file you wish 1o open
and click the "Open" button to open the TRILOGI file from the TLServer.

Sub-directory: The MkDir button allows you to create a sub-directory on
the server to organize your files. Subdirectory names always end with a
"/ character. If you open a subdirectory its contents will be displayed in
the file window. To return to the parent directory from a sub-directory,

you simply double-click on the symbol.

Save As (TLServer 3)

Use this command if you wish to save the currently edited TRILOGI file to
the TLServer 3.x using a different filename. You will be prompted to enter
the Username/Password (and IP address if it is a TLé application) to gain
access 1o TLServer. Once authenticated, the network file dialog similar
to that described in "Open (TLServer 3)" will be opened for you to enter a
file name or select a filename to overwrite.

Open (Local Drive) / Save (Local Drive)

For TL6 Application (not Applet) you can open or save a file from/to the
local hard disk. You will be presented with a file dialog to select a file.
This command however is not available to the TL6 Applet since an
applet does not have the right to access local hard disk resources.

The default file extension for opening a TRILOGI file is ".PCé". This signals
to the TL6 application that the file is in Unicode format and TL6 will then
load it accordingly. However, TL6 is also able to read files with ".PC5"
extension which are files created by older TLS applications. TL6 assumes
that all ".PC5" files are stored in ASCII format and will load it accordingly.

To display ".PC5" files in the Open File dialog, simply enter the string
"* PC5" in the "File Name:" text field and press <Enter>. The window will
now display only files with "*.PC5" extension. You can then navigate to
the folder that contains the ".PC5" files to pick the file you want to open.

The default file extension for saving a TRILOGI file in TL6 is ".PC6". This
signals to the TL6 application to save the data in Unicode format.
Unicode is required to store international characters, which cannot be
properly saved in the ASCIl format used by TL5. However, you may still
save the currently opened TRILOGI file in TL6 to a file with an extension
"PC5", which will then instructs TL6 application to save the file in ASCI
format. Files saved with ".PC&" extension may then be opened using
older TL5 applications.

7-3

Important Notes:

a. Since ".PC¢" files are saved in Unicode while *.PC5" files are saved in
ASCIl code format, the two files type are NOT interchangeable.
Therefore, you must not simply change a file name extension from
“.PC5" to ".PC6" via Windows File manager and then attempt to
open it from TL6, otherwise TL6 will complain that it is not a valid
TRILOGI file.

b. Any Unicode characters used in the program that cannot be
represent by 8-bit ASCIl code will be lost when the file is saved in
"PC5" format and it is not recoverable. So if you use non-English /O
labels your program will most likely fail to compile when it is saved
as a ".PC&" file, since the I/O labels will be converted to ASCII and
partially truncated. Thus, it is important to keep the original copy of
your .PC6 program so that you can work on it to resolve the Unicode
conversion issues.

View Protect / Un-Protect

This feature allows you to prevent others from viewing a pre-defined
range of ladder logic and custom functions. When you select "View
Protect" command, you will be asked to enter an unlocking password, a
range of ladder logic starting from circuit #1, as well as a range of
custom functions whose content you wish 10 prevent others from
viewing, as follow:

£ Password Protection of TRIiLOGI File X

YWiew Protect Password |

Re-enter Password |

Enter range of elements to protect from viewing:

Ladder Circuit# |1 to
Custom Function # to

View Protect | Cancel

The moment you click on the "View Protect" buffon, you can no longer
view or print the protected range of ladder circuits and custom
functions. When you save the view-protected program, it will be saved in
an encrypted format and it cannot be opened using older version of
TRILOGI software. However, you will sfill be able to add new ladder

7-4

circuits and custom functions to this program as well as modify those
unprotected ladder circuits and custom functions. Of course, you will still
be able to compile, simulate and transfer the protected program to the
PLC as usual,

A view-protected file can be unprotected by selecting the "Un-protect"
command from the "File" menu and supplying the unlocking password.
Note that this unlocking password is strictly for un-locking the viewing
restriction and it has nothing to do with other username and/or password
required for interacting with the PLC.

This View Protection command is extremely useful for OEMs who wish to
allow end users of their equipment 1o modify or append to the PLC's
program for ease of interfacing to other equipment, but without
revealing the core content of the PLC program to the end user. Besides
being able to protect the OEM's intellectual property, it will also help to
prevent the end users from mistakenly modifying the core program,
which can lead to unexpected result.

. Write Compiled Code to Disk

This new feature is added since TRILOGI version 5.32. You can now write
the compiled program code to a disk file so that you can send the
compiled code (with a ".CO5%" extension) o0 your end customer to
upload to the M-series PLC using a standalone "TLS Uploader" program.
This allows you to protect your source program file content, while giving
the end users of your equipment the ability to upgrade the PLC program.
The end users DO NOT need to install the TRILOGI or the Java JRE in order
to use the TL5 Uploader program. so that makes it more flexible for you
to distribute self-upgrade for the end users.

The TL5 Uploader program can be installed by first unzipping the
"InstallTLSUploader.zip" file obtained by emailing to "support@tri-plc.com”
and then run the '"Setup.exe" program. Please note that the "TLS
Uploader" is a copyrighted program and Triangle Research International
is the copyright owner of this program. However, Triangle Research
International authorizes the licensed users of the Internet TRILOGI version
6.x software to freely distrioute the "InstallTlLSUploader.zip" program to
their end users at no charge.

Note: Although TRILOGI version 6.x supports Unicode for its user-
interface, the compiled code produced by TL6 is identical to
that of TL5 and therefore the compiled file is still saved in ASCII
formaf. To maintain backward compatibility the "Write

7-5

Compiled Code to Disk" function sfill produces ".CO5" file that
can be uploaded using the TLS Uploader" program.

8. Print

You may use all the printing resources supported by your O/S to print a
selectable range of the ladder diagram, the /O Tables or the custom
functions. When executed the following "Print Control Panel" will appear:

B Print Control Panel

Print I Fage setup || Frint Preview |

Print. |Ladder Circuits ~ w| Mo, of Elernent |10
EII_':EJI |_1 |_1 E-r [i' rc |j 'i'f:z: E

i Tables

Zustom Functions

From: |1_T|:|: |1_

To print, first select the item from the choice box and define the range
you wish to print and then click on the "Print" button. For "Ladder
Circuits", the range indicates the circuit numbers. For "l/O Tables", the
range indicates the I/O number (up to 256) and for "Custom Functions",
the range is the function number.

You can use the "Print preview" buftfon to check the pagination of the
printing on screen. You can select paper size and print orientation. etc.
by clicking the "Page setup" button. Empty custom functions will be
automatically skipped to save paper. When you select to print the
"Ladder Circuits" a special "No. of Element" textbox appears. This textoox
is for you to enter the maximum number of series element that can be
printed on the paper width. Changing this number affects the scaling of
the ladder diagram when printed. The smallest number is 5 and largest
number is 13. Use a smaller number if you wish to have a larger printout.
However, please note that if your ladder program contains circuits with
more elements than that indicated by the "Width" parameter the "out-
of-page" part of those ladder circuits will not e printed.

NOTE: Trilogi v6.2 infroduces an improvement in printing where leading

and trailing white spaces of each custom function are automatically
removed during printing to save the number of printed pages

NEWI Trilogi v6.22 introduces some improvement and some additional
features that provide greater flexibility for printing. See below for details.

7-6

Wider I/O Table

Previously, the I/O Table label names could only be 10 characters, but
Trilogi 6.2 and up allows label names of up to 16 characters (see the
IOTable section for more details). It is now possible to print an 1/O Table
with label names up to 16 characters and still fit all of the information
within the page width. The only difference is that Relays #257 to 512 will
e printed on a second page to provide more room.

Export the I/O Table

Now you can export the I/O Table to a ".csv" file that can be opened by
any program that has ".csv' compatibility. If you use Microsoft Excel, you
can open the ".csv' file and the I/O table contents will automatically be
displayed in an Excel spreadsheet. This provides limitless possibilites for
printing the contents of the I/O Table and for integrating them into other
documents. To export the /O Table, just choose the "l/O Tables" option

Export

from the Print Control Panel and click on the | button, as shown

in the Print Control Panel below. You will then be prompted to save the
I/O Table as a ".csv" file.

E Print Control Panel

Print I Fage setup || Print Prewview |

Frorm: l'l_ To; E Export |

NOTE: You can select the range of I/Os you want to export to a ".csv"
file, just like you can select the range of I/Os you want to print.

Export Custom Functions

Now you can export custom functions to a ".ixt" file that can be opened
any text editing program. It is best 1o use a text editor that interprets
cariage returns as new-line characters as well so that each custom
function is displayed as it would be in the Trilogi Custom Function Editor
instead of as one long line that is very difficult o read. A good editor to
use is Wordpad or Microsoft Word. To export Custom Functions, just
choose the "Custom Functions" option from the Print Confrol Panel and

click on the RO button, as shown in the Print Control Panel below.

You will then be prompted to save the Custom Functions as a ".ixt" file.

7-7

Print Control Panel

Print Fage setup Print Preview

Tah zpaces 15

Print: |2s80Eialey

Frorm: {1_T|:|: E Export

NOTE: You can select the range of Custom Functions you want to
export to a "txt" file, just like you can select the range of Functions you
want to print.

Exit

Execute this command to exit orderly from the TRILOGI program. You will
be prompted to save the current file if the contents have been edited
and the changes have not yet been saved.

7-8

Edit Menu

1.

Abort Edit Circuit

Changes made to the current ladder circuit can be aborted if you
execute this command before pressing <Enter> to accept changes
made to the current circuit. If changes have already been accepted
by pressing the <Enter> key, then this command will have no effect.
This command is useful if you wish to completely abandon changes
you have made fo a circuit without going through all the undo steps.

Undo <Cil+Z>

Undo the last changes made to a ladder circuit. TRILOGI automatically
stores the last 10 edited steps so you could execute undo several times
fo restore the circuit back to its original shape.

Cut Circuit - <Ctrl+X>

You can remove a number of circuits from the current ladder program
and store them temporarily in the cliplbboard for pasting into another part
of this ladder program or into another file altogether. In other words, it
lets you move a block of circuits fromn one part of the ladder program
to another part or info another file. Once you execute the "Cut Circuit"
command, a prompt box as shown below will appear. You have to
specify the range of the circuits you wish to cut and press the "Yes"
button to remove them from the ladder program.

£ Cut Ladder Circuits to Clipboard

From Circuit# |2
To Circuit® |5

Confirm Cut Circuits? (Can't Uinda!!)

Yes Mo

* Please note that you can't UNDO a Cut Circuit operation.

Copy Circuit (Ctrl+C)

You can copy a block of circuits from the current ladder program and
store them into the clipboard for pasting into another part of this ladder
program or into another ladder program file altogether. The range

7-9

dialog box similar to "Cut Circuit" will appear for you to enter the range
of circuit to copy.

Paste Circuit <Cirl+V>

When you execute this commmand, the block of ladder circuit that you
"Cut" or "Copy" info the clipboard will be pasted just before the currently
selected circuit. The current circuit number will be adjusted 1o reflect
the change.

Find <Citrl+F>

The Find command allows you to quickly locate a ladder logic circuit
that contains a particular label name. This is useful for searching for the
activity of a particular I/O in the program. The Find command can also
be used to search for a keyword in a TBASIC program. When this
command is executed you will be further prompted to select the
options of either searching for a ladder logic label or finding a text in a
Custom Function.

£ Find Label

Control

Label Mame: || Eind Find All

(F2 key - select from I/O Table) Type CusFn Search Texd Here

Find Ladder element: you can enter into the text field a sting that
partially or fully matches the label name you wish to locate. You can
also press the <F2> key to open up the I/O table and pick the label
name from the 1/O table.

Find Text in CusFn: It is now possible to search for text within a custom
function and when the option "Find Text in CusFn" is selected, the
custom function editor window will open automatically to the first
custom function. You can either search for text within the current
custom function (local search) or in all of the custom functions in your
program (global search).

To do a local search, simply type the text in the command line below
the "Find" and "Find All' buttons and then click the "Find" bufton. If the
text is found in the current custom function, it will be highlighted in the
text editor as shown below. Also, the text "Find only in this CusF" will be
displayed below the command line in the search areq, indicating a
local search. Each time the "Find" button is clicked, the next instance of
the search text will be highlighted until the text cant be found anymore.
At this point the message in the search area will change to "Text Not

7-10

Found' and the next time "Find" is clicked, the first result wil be
highlighted again.

E Custom Function #1 - EventCount

| Control
X = @+l ' Initial walue of £ = 0 o
‘ Finel Find All

SETLCD 1,1, "Cycle Count = "+3TR$ ()

i
Find only in this CusF

To do a global search, simply type the text in the same command line
and click the "Find All" butfton. If the text is found in any custom function
within the program, it will be highlighted in the text editor as shown
below. Also, the text 'Find in all CusF" will be displayed below the
command line in the search areq, indicating a global search. Each
time the "Find All" butfton is clicked, the next instance of the search text
will be highlighted until the text cant be found anymore (in any custom
function). At this point the first result will be highlighted again. If no text
matches the search text, the message in the search area will change
to "Text Not Found".

E Custom Function #1 - EventCount

xl_ gy s B — [P Control

= nitial walue of X = 0]

SETLCD 1,1, "Cycle Count = "+3TRS () Find ‘ Find All
x |
Find in &I CusF

NOTE: Highlighting of text found in the editor during a user initiated
search or during compilation error tracking now works with JRE (Java
Runtime Environment) 1.5 and 1.6

7. Goto <Ctrl+G>

Use this command to move towards a specific circuit number. The
'Goto" command is particularly useful if your program contains many
circuits, and it is inconvenient to search for a particular circuit using the
mouse or the cursor keys.

8. /O Table <F2>

Open up the /O Table for defining label names for the PLC's I/O. For
detailed explanation of I/O tables, please click on the following link: /O
Definition Table

9. View |/O Type on Ladder <F3>

Toggle between display and no display of the /O type for ladder logic
contacts on the screen. All ladder logic contact symibols are normally

7-11

identified by their label names. However, you can also choose to
display an optional small literal to indicate the 1/O types and physical
I/O number, which is now linked to the I/O labelname. e.g. iT=input 1,
ol2=output 12, 125= relay 25, t1= timer 1 and c5=counter 5. When
TRILOGI first starts, the display is enabled but you have the option of
tuning it off if you find it distracting.

. Edit Custom Function <F7>

Opens up the Custom Function Editor window for you to enter the
TBASIC program. You will be required to select the custom function
number or a label name from the CusFn table (which is part of the 1/O
Table). Each TRILOGI file can contain a maximum of 256 custom
functions. Each custom function will be opened in its own window. The
custom function number and the optional lalbel name will be displayed
on the Title of the Custom Function editor window:

K% Custom Function #1 - IF_COMPARISON =19
= Control
' Example use of multiple IF-THEMN-ELZE ikt I
! Each IF statement rmust have an ENDIF i Find | Find All |
' EL3E i=s copticnsal. r ¥ |
L4=INPUTS (1)
L = VAL(A$) 1-IF_COMPARISON V|
IF L > O THENW
PRINT #3 ™ WValus entered = ":L:" iz greater tha Rename Function |
DM[1] = A%*10 =
(] M | I |_ - Select Keyword - -
s e
i % Order/Sales +1-877-TRI-PLCS / +1-877-874-7527 |~ Undo H Abort
| II—-E‘; Inquiny: (8:30am to ::00pm PST; Mon-Fri) =
7l I | |r|_| b || : H 2 || it |

NOTE: This is a new and improved custom function editor. For a full
description of its features, see the TBasic Introduction page and go to
the 2. Custom Function Editor section

. Clear Custom Functions

This command allows you to select a range of custom functions whose
content you want completely cleared. You will be prompted to select
the range of custom functions to erase. Note that this action is not
undo-able.

7-12

Controller Menu

All commands in this menu are for communication with the PLCs via the
TLServer. Hence the TLServer must be actively running and connected to
the PLC(s) via its serial port before the commands here can be
successfully executed. Note that TLServer can be running on the same
computer that TRILOGI is running on (using localhost IP 127.0.0.1), or on
another computer in the same local area network, or anywhere in the
world with an Internet connection. The experience is identical regardless of
where the TLServer (and hence the PLC) is situated.

Note: In order to maintain compatibility with the "Ethernet XServer' device
which is not Unicode aware, the TL6 Application still uses standard ASCI
encoding when communicating with the PLCs. (This is unlike opening or
saving TRILOGI program files to the TLServer, that would require Unicode
network stream as mentioned in the "File" menu help page). As a result,
the TL6 application can work with TLServer version 3.x as well as older
TLServer 1x and 2x. when it is only for the purpose of
programming/controlling and monitoring the PLC and not to read/write
TRILOGI file.

If there is no existing connection made 1o the TLServer, then execution of
any command in this menu will always bring up the password dialog for
you to enter the Username/Password as well as the IP address:port of the
TLServer. You must be positively authenticated before you are able to
login to the TLServer. See “Log In to TLServer” for detailed explanation of
the Username/Password Dialog box. Once you have login to the TLServer,
see explanation of each function below:

Select Controller <Ctrl-1>

The only editable field is the ID field. You have to enter the ID address in
hexadecimal notation (00 to FF). This commmand allows you to select
another PLC that is connected to the same TLServer (usually via RS485
mulfi-drop connection) but with a different ID for on-line monitoring or
program transfer.

Connect / Disconnect to Server

Use this command to login to the TLServer only if you have no intention to
perform other controller commands. You may find that you seldom need
to use this command since running the On-Line Monitoring or Program
Transfer commands will also let you login to the TLServer if you have not
yet done so. However, once you are connected, this command changes
intfo "Disconnect from Server' and this is the only way for you to log out of
the currently connected TLServer so that you can use the

7-13

Username/Password dialog box to login as a different user, or fo login to
another TLServer of a different IP Address/port number.

3. On-Line Monitoring <Ctrl+M>

See description of On-Line Monitoring in Chapter 5 (page 5-16).

4. Program Transfer to PLC <Cirl+T1>

This command is only available if your login username is assigned the
access level of a "Programmer”. If your login is restricted to either a "User"
or "Visitor", this command is disabled from the Controller's menu. (It will be
enabled again after you disconnect from the server)

You can use this command to fransfer your TRILOGI ladder +TBASIC
program into the PLC. You will be prompted to confirm your action to
prevent accidentally affecting the target PLC. The ladder program must
be compiled successfully before the program fransfer process can take
place. The progress of the transfer process will be clearly shown on the
program transfer dialog box.

5. Open Matching Source File

You can use this command to query the connected PLC for the filename
of the last TRILOGI program transferred to it and it will attempt to match it
to a file stored in the log-in user's directory at TLServer. If the file is found, it
will be opened. Otherwise it will report that the file is not found. Note that
this command only opens the source file based on file name matching. It
does not verify whether the file has been modified. It is the user's
responsibility to ensure that the file stored in the server is the same one that
has been compiled and transferred to the PLC.

Note that if you have created a new file (i.e. the file name is "Unfitled”) and
then attempt to perform on-line monitoring, this command will be called
automatically to fry to open a file that matches the PLC. The command is
also invoked when you select a PLC with a different ID either from the
"Controller" menu or from within the "Full-Screen Monitoring" window.

Note to Unicode users: If you created your file name using Unicode
instead of plain ASCII, the Unicode filename will not be saved into the F-
Series /| M-series PLC since the PLCs do not support Unicode in its internal
memory. In such case you cannot use this command to open the
matching source file. You would have use the "File -> Open (Local Drive)"
command to manually open the file for monitoring purpose.

6. Get PLC's Hardware Info

7-14

You can find out the PLC's firmware version number, the maximum of input,
outputs, relays, timers and counters supported on this PLC as well as the
total amount of program memory available. The same info will be
displayed when you try to transfer a program to the PLC.

7. Set PLC's Real Time Clock

£ Set Target PLC's Real Time Clock [X]

Manth Day Year 1-7day
[2 E 12006 K
(Mon)

|23 |1? |35
Hour Min Sec

Set PLC's Clock ‘ Cancel ‘

The PLC's real time clock (RTC, which includes both date and fime) can be
set quickly using this commmand. When you run this commmand, a dialog
box that contains the year, month, day, hour, min, sec and day of week
are displayed for you to enter the value. The dialog box is initially filled with
values taken from the client computer's own calendar and clock. You can
change any of the field to the desired values and then click on the "Set
PLC's Clock" button to write them to the PLC. The dialog box will be closed
after the TRILOGI has fransferred the real time clock data to the PLC. You
should use on-line monitoring to verify that the data has indeed been
properly written into the PLC.

Note that the "Year" field is restricted to only between 1996 and 2096,
"Month" is between 1 and 12, "Day" is between 1 and 31, "Hour" is between
0 and 23, "Min" and "Sec" are between 0 and 59. If you enter an illegal
value TRILOGI will beep and the cursor will be put at the offending text
field. Correct the mistake and then click on the "Set PLC's Clock" button
again to transfer the values to the RTC.

8. EEPROM Manager

This command allows you to read/write the data EEPROM content from
and to an M-series PLC with firmware r47 and above and all F-series PLCs.
The EEPROM manager also allows you to save or load the data to and
from the PC’s hard disk. When the "EEPROM Manager” is selected, you will
see the following screen:

7-15

£ PLC Data EEPROM Manager

et INTEGER EEF data from FLC Get STRING EEFPdata from PLC |

[~ Hex Data i
Write EEP Buffers to PLC |

Integer EEP Buffer String EEP Buffer

%1, ABC Machine Tool
52 Temperature
art and Stop Buttons
$4 Color of the Wall
$5 Alarm is activated
56 \FRFRFRFRFRFRFRFRFRFRFRFRFRFR
57 \FRFRFRFRFRFRFRFRFRFRFRFRFRFR

Retrieving EEP Integer#1to0 5

Load from File into Buffer Save Buffer to File |

Help

There are two buffer areas: The left dark blue text area is a buffer to hold 16-
bit Integer EEPROM data, the right text area is to hold the String EEPROM
data. You can manually enter data in the buffer areas that are to be written
fo the data EEPROM, or if you retrieve data EEPROM (integer or string) from
the PLC the data will be captured into these two buffer areas. The data
must be entered in "comma-delimited” format as described below:

1) Integer EEP Buffer Format

Integer EEPROM data should be entered in the format [address], [data]
and a line break. E.g. to store decimal data 12345 (equivalent to 3039
in hex) info address 10, enter the following text into the Integer EEP Buffer
areq.

10, 12345 or, in hexadecimal data format:
10, &H3039

7-16

2) String EEP Buffer Format

String EEPROM data should be entered as $/address], [text string]. E.Q. tO
store the string “Test Message 10" into string address 5, enter the
following text into the String EEP Buffer area:

$5,Test Message 10
$8,Rm Temp=25\DFC

If you need 1o store a non printable character or ASCIl character which
is > 127 in value into the string EEP buffer, you can enter it as an
‘escape sequence” which is in the format of “XX". The backslash
character *\" denotes that this is an escape sequence, and XX is the
hexadecimal value of the character. E.g. character A can be written as
“\41" and character Z can be written as "\5A". In the second example
above, the \DF character is ASCIl 223 which on an LCD216 or LCD420
will be displayed as a ° symbol.

Note:

1) Normally when an EEPROM is in erased state, all it memory bits
contain binary ‘1" and when you read them from the EEPROM as
string, they will be returned as “\FF”.

2) To prevent disrupting communication with the PLC, the strings to be

written to EEP must not contain any of the following characters: ASCII
0 (M00”), ASCII 10 ("\OA") and ASCII 13 ("\0OD").

Write EEP Buffers to PLC |

Click on this button to write both the infeger and stiing EEP buffer contents
to the PLC’s EEPROM. TRILOGI will prompt you to confirm the write action
and it will also prompt you to login to a TLServer if it is not already

connected 1o one.

et INTEGER EEF data from FLC

Get STRING EEPdata from PLC

You can click on one of these two buttons to read a range of data EEPROM
as 16-bit integer or as an ASCII string into their respective EEP Buffer. The
program will attempt o login to a TLServer if it is not already connected. It
will check the maximum EEPROM addresses available on the target PLC
and then prompt you to enter the range of integer data you wish to read

(up to the maximum available):

£ Retrieve Integer EEPROM Data from PLC X

From Address #(1-7750) |1
To Address # (max=7750) [150

Get Integer Data | Close |

The data read from the PLC are stored into the EEP buffer in comma-
delimited format as described above. Integer EEPROM data can also be

captured in hexadecimal format if you check the MHexbata check box.
You can edit or append to the captured data in the buffer and then write
them back to the data EEPROM area or save as a hard disk file.

Load from File into Buffer Save Buffer to File

You can save both the Intfeger and String EEP Buffers content to a single text
fle with the default extension “.csv’. The data are stored in comma-
delimited format described above with Integer data being save first, then
followed by the string data. The comma-delimited format makes it very
easy for a spreadsheet program such as MS-Excel to import the data info
the spreadsheet for further processing. You can also use MS-Excel to
generate data that are to be written to the EEPROM and then save the file
as "CSV” file, which can then be imported by EEPROM Manager using the
"Load from File into Buffer” button.

EEPROM Manager Applications

a) Using EEPROM Manager, it is now possible to pre-load the PLC's data
EEPROM (either as 16-bit integer or ASCII strings) with pre-defined content
so that they can be used by the PLC program. This is very convenient for
implementing a lookup table or to define a large number of ASCII text
string constants to be used for LCD display or communication without
taking up too much program memory.

b) If you use the PLC's data EEPROM for data-logging, it is now possible to
refrieved the saved data from the PLC and write it to the hard disk as a
comma-delimited text file, which can then be imported into a
spreadsheet or database program for further actions.

C) If you ever need to replace a PLC that logs data to its data EEPROM
areq, you now can also use the EEPROM Manager to retrieve all the

7-18

data EEPROM content from one PLC and fransfer them to the
replacement PLC so that the replacement PLC will work identically to the
original PLC.

IV. Simulate Menu

TRILOGI allows you to perform almost 100% simulation of your PLC's
program off-line on your PC. This is a great tool for testing a program
quickly before a machine has been manufactured. It is also a wonderful
tool for all new PLC programmers to practice their ladder logic
programming skill without the need to purchase a PLC test station.

TRILOGI automatically compiles a ladder program before activating the
simulator. If an eror is found during compilation, the error will be
highlighted where it occurs and the type of error is clearly reported so that
you can make a quick correction.

1.

Run (All I/O Reset) <Cirl+F9>

This should be the opfion to use when you first begin to test your
TRILOGI program. When executed, all /O bits (including inputs) are
cleared to OFF state, all integer data are set to 0 and all string data
are set to empty string. Then the "Programmable Logic Simulator”
window will open for you to conduct the simulation test of your
TRILOGI ladder program.

Run (reset Except i/p) <Cirl+F8>

Very often you may wish to keep the input setftings "as is" when you
reset the simulator. This situation is quite realistic in the sense that
when a PLC is powered-on, some of its inputs may already be in the
ON state. (e.g. sensors may detect the end positions of a cylinder
rod, etc). This command allows you 1o preserve the logic states of alll
"Inputs" while resetting all other data. Note that the <Ctrl-F8> key
also works in the "Simulator' screen so that at any time you can reset
the simulator without affecting the logic states of the inputs.

Continue Run (no reset) <F9>

Use this command to continue simulating the program since you last
closed the simulafor. All previous dafta are kept intact and will be
used by the simulator 1o continue execution of the ladder program. If
you have made changes to the ladder program or custom functions,
the whole program will be recompiled before running.

7-19

Note that first scan pulse (1st.Scan) will not be activated when this
command is executed since this is supposedly a contfinuation from
the previous simulation run. This command can be useful if you have
discovered a simple bug in your software during simulation, you can
fix it immediately and test the effect of the change on the simulator
instantly without restarting the entire simulatfion session from the
pbeginning again.

4. Compile Only <F8>

Allow you to compile the TRILOGI file only in order to view the
compilation statisfics:

B Compilation

Success |

Tatal Mumber of circuits T

Ladder Diagram fwoards) 28
Zustom Function dwords) 17
Total code Size a5

Checksum =0B3B

5. Reset All I/Os <Ctrl-R>

Clears all I/Os in the simulation engine without invoking the simulator.
Since all I/Os whose logic states are tfurned ON in the simulator will also
e shown as highlight on the ladder diagram, this offers a way to clear
the 1/Os if it hinders your viewing of the ladder program.

V. Circuit Menu

1. Insert Comments

Comments are specific remarks used by a programmer to explain
various characteristics of a program segment and are ignored by the
compiler. TRILOGI Version 6.x allows comments to be freely inserted
between circuits. Execute this command and the Comment Editor will
e opened. The comment editor allows you to enter any text you like
that best describes the working of the circuit. All standard text editing
keys, including cut and paste are applicable to the Comment Editor.

7-20

NEW! In previous versions of Trilogi, you would press <ESC> key or

click the button to close the comment window and automatically
save the changes when you had finished editing it. Trilogi 6.2 allows
you 1o save and close the comment the same way as before or by

clicking the new 9Kl putton. It is now also possible to exit the
comment and discard any changes made since it was last opened

by clicking on the new _Abot | pytion,

Once a comment has been created, it is assigned a circuit number
and is freated like any other circuits. You can edit it by pressing the
<spacebar> when you are in Browse mode, alternatively, you can
move it around, copy it to another destination or delete it entirely
using commands in the "Circuit" menu.

Insert Circuits

This command enables you to insert a new circuit just before the
currently selected circuit. The current circuit numioer will be increased
by one while the new circuit will assume the current circuit number.
You will be placed in the circuit-editing mode for immediate circuit
creation.

Move Circuit

You can rearrange the order of the circuits by using this command.
Select the circuit you wish to move and execute the "Move Circuit"
command, then select a destination circuit location and press
<Enter>. The selected circuit will be moved to the new location
before the destination circuit.

Note that if you wish to move a block of circuits to a new location,
you may find it more productive to use the "Cut Circuit" and "Paste
Circuit" commands in the "Edit" menu.

Append Circuit

Execute this fo add a new circuit to the ladder logic program. This
new addition will be positioned immediately after the last circuit in the
entire program.

Delete Circuit

This cormmand allows you to delete one or more circuits. You will be
prompted to enter the range of circuits that you wish to delete. Please
note that you can't UNDO a delete circuit operation.

7-21

VI. Help Menu

All contents in this manual are available for instant reference on the
computer where the TRILOGI program is running. This includes running the
“applet” version of TRILOGI program on a remote browser because the
relevant help files will be retrieved from the TLServer automatically.

You can call up the help files anytime by pressing the <F1> key. You can
also select the “Content” item from this “Help” menu to bring up the
content page of the entire on-line TRILOGI help files. On the content page
you can find the links to the Ladder Logic Editor and the entire TBASIC
language reference.

There is a "TRILOGI Upgrade” link in the Help menu that allows you to
obtain the latest Internet TRILOGI upgrade setup program from the
Internet. Simply follow the instruction to enter the welbsite using the
supplied username and password to obtain upgrade.

On TRILOGI version 6.1 and up, there is also a special command called
"Chinese LCD Code Converter” on the Help menu. This is to help generate
the escape sequences for special LCD model that can display Chinese
characters. Its function will be covered in the Chinese LCD installation and
user guide and is not needed by non-Chinese LCD users.

Instant Help for TBASIC Keywords

A convenient feature was implemented in previous versions of TRILOGI
Version 6.x, which allows you to easily get help for the syntax of a known
TBASIC keyword.

NEWI!I However, TRILOGI 6.2 has taken this feature one step further with the
new custom function editor. E.g., Just like with previous versions of TRILOGI
6.x, you can find the syntax for the keyword “READMODBUS” by simply
selecting the "READMODBUS" keyword in the custom function editor and
then pressing the <F1> key, instead of navigating through the help file
links. Previously, the help file would open up in a new window with the
syntax for the “READMODBUS” keyword. Now, you will be immediately
presented with the help document for "READMODBUS” command in the
lower pane of the custom function editor as illustrated in the following
screen shots.

7-22

E Custom Function #1 - MBREAD =13

= Comtrol
i Find Find All
1-MBREAD o
4] I | v | Rename Function
Order/Sales +1-877-TRI-PLCS / +1-B77-874-7527 || - Select Keyword - g
L‘Tﬂ% Inquiry: (5:30am to 5:00pm PST; Mon-FA) -
LUindo Abort
NN N N
. i [+ |

Press the <F1> key once after you have selected the keyword of interest,
and the help file for the selected keyword will be immediately loaded in
the lower pane of the custom function editor as follows:

7-23

¥E Custom Function #1 - MBREAD E] EIFEI

R = Control
READMODEUS =
Find Find All
> [1-MBREAD -
<] i [[»]
o T B B R A A R A s
Rename Function

| ¥

READMODBUS (rh, DevicelDl, address)

Furpose Automatically query a MODBLS ASCH device and

- Select K ord - -
return the 16-it register data using the MODBUS ek
ASCIH protocal. The communication baud rate is the
default baud rate ofthat COMM unless it has heen Undo Abort
changed by the SETBALID command.
ch |<-=||-=||=-||=-=-|

- PLC COMM part number {1-83
DevieelD - device 1D ofthe MODBUS device (1 to 255)

adidress - zero-offset address of the holding register
in the MODEBLS device.

Examples |relay [3] = READMODEUS (3, §, 101

Copmments: || The relay will confain the 16-Bf date obfaned from ihe
MODEUS device with ID = 05 and from reglster offsef
address 101 fn MODEUY ferm f1s refor fo the $0I 02
holding regisfer) . Reading itinto fhe relay[§ charmel allows
Bif lavel manmpulaiion by ladder logie. B ean of course also
be readinio anp dete memory. The commeand automaeically
checks the response siring recaved from the siave device for
the correct LRC and the slave address. The skafus of the
operation can be checkedin the user program by execuing
fhe STATUSE) fumclion, which will rebim @ W if there is
any ervor or if e slave device is not present

See Alsg | WRITEMODBUS, STATUS(2), NETCMD$()

.I Basic to TBASIC Reference Manual

1

7-24

Chapter 8: Ladder Logic Language Reference

|. Ladder Logic Fundamentals: Contacts, Coils, Timers and Counters

1. Contacts

Ladder logic programs mimic the electrical circuit diagrams used for
wiring control systems in the electrical industry. The basic purpose of an
electrical control system is to determine whether a load should be turned
ON or tuned OFF, under what circumstances and when it should
happen. To understand a ladder program, just remember the concept
of current flow - a load is turned ON when the current can flow to it and is
turned OFF when the current could not flow to it.

The fundamental element of a ladder diagram is a "Contact". A contact
has only two states. open or closed. An open contact breaks the current
flow whereas a closed contact allows current to flow through it to the
next element. The simplest contact is an On/OFF switch, which requires
external force (e.g. the human hand) to activate it. Limit switches are
those small switches that are placed at certain location so that when a
mechanical device moves towards if, the contact will be closed and
when the device moves away from it, the contact will be open.

If a contact is connected to a load and the contact is closed, the load
will be turned ON. This simple concept can be illustrated by the most
basic ladder diagram as follow:

‘ Switch Lamp
| | 2 (OUT)

The vertical line on the left is the "Power" line; current must flow through
the "Switch" contact in order to tum ON the load "Lamp". (In fact, there
should be a second vertical line on the right end of the ladder diagram
to provide a return path for the current flow, but this is omitted to simplify
the circuit diagram). Now, if instead of wiring the switch to the lamp
directly as suggested in the above diagram, you could connect the
switch to the PLC's input and connect the lamp to the PLC's output, and
then write the above ladder program to perform the same job. Of
course it makes little sense to use a PLC if that is all you want to do. We
will see how a PLC can simplify wiring shortly.

Note: The contact "Switch" shown in the above diagram is
termed a Normally-open (N.O.) contact.

8-1

Now, lef's say if there are 3 switches that must work together to control
the lamp. A Master switch must be ON, and one of the two control
switches "controlsw1" and "controlsw2" must be ON while the other must
e OFF in order to turn ON the lamp (think of three-way switches in your
house and you will get the ideq). We can wire all 3 switches to 3 inputs of
the PLC and the lamp to the output of the PLC. We can write the
following ladder program to perform this task:

‘ Master controlShl cnntrnI_BWE Lamp

1= e A2 (oUT)
controlSW1 controlSWy2
e s

A contact with a /" across its body is a Normally-Closed (N.C.) contact.
What it means is that the ladder program is using the "inverse" of the
logic state of the input to interpret the diagram.

Hence in the above ladder diagram, if "Master' and "controlSW1" are
turned ON but "controlSW2" is tumed OFF, the lamp will be turned ON
since the inverse logic state of an OFF state "controlSW2" is true. Think of
an imaginary current flowing through the "Master" contact, then through
the "controlSW1" and finally through the normally-closed "controlSW2"
contact to turn ON the lamp.

On the other hand, if "controlSW1" is OFF but "controlSW2" is ON, the
Lamp is also turned ON because the current could flow via "Master" and
then through the lower parallel branch via N.C. "controlSW1" and the
N.O. "controlSW2",

Note: As you can see, although the switch "controlSW1" is
connected to only T physical input to the PLC, but it appears twice
in the ladder diagram. If you actually try to connect physical wires
to implement the above circuits, both "controlSW1" and
"controlSW2" will have 1o be of multiple poles type. But if you use a
PLC, then these two switches only need to be of single-pole type
since there is only one physical connection, which is to the input
terminal of the PLC. But in the ladder diagram the same contact
may appear as many times as you wish as if it has unlimited
numiber of poles.

The above example may be simple but it illustrates the basic concept of
logical "AND” and “OR" very clearly. "controlSW1" and "controlSW2" are
connected in series and both must be TRUE for the outcome to be TRUE.
Hence, this is a logical AND connection. On the other hand, either one of
the two parallel branches may be used to conduct current, hence this is
a logical OR connection.

8-2

NEW! A new type of contact, available for the F-Series PLCs only, is the

Rising-Edge contact, which looks like this: fputalll in the ladder logic
toolbar and like this: ™ when placed in a ladder logic circuit. This type of
contact will detect a change of status from off to on and then send @
single pulse out (one shot). This contact can be used for any physical
input or output or any internal bits (relay, counter, timer). In the case of
physical input and output rising-edge contacts, a rising edge will be
detected if the I/O has changed from off to on from one I/O scan 1o
another (any I/O status changes that happen during a ladder logic scan
wont matter for physical I/O). In the case of the internal bit rising-edge
contacts, a rising edge will be detected if the internal bit has changed
from off to on from one ladder logic scan to another (any internal bit
status changes that happen during an I/O scan wont matter for intemnal
bits).

Here are some examples of this for the physical I/O:

Ex1. In the circuit shown below, if Inputl is off for an I/O scan and then on
for the next I/O scan, a single pulse (one shot) will be sent to Output1 and
Output1 will be turned on for one program scan time (turned off on the
next I/O scan). On the same |/O scan that Outputl is turned off and all
following I/O scans, whether Inputl is still on or has been tumned off, a
rising edge will not have been detected and Output1 will remain off. For
a new rising edge to be detected, Inputl must be scanned as off first
and then scanned as on in a following 1/O scan.

Inputt Cutputl
lr| 1 {OUT}

Ex2. In the circuit below, when Input1 goes from the off status to on status
(as described previously), a single pulse will be sent to a [Latch] function
that will latch Output1 to the on status. The actual Latch function will only
e activated for a single scan fime (just as Outputl was in the previous
example), but it will permanently latch Outputl to on until Outputl is
unlatched using the [Clear] function. This way Outputl will remain on
even though Input1 has only sent a single pulse and Output1 will not be
affected by any further rising-edge detections from Inputl (can only be
latched once until it is unlatched).

[nput Cutputl
pl 14 [Latih]

The same principles can be applied to infernal bits and coils as were
previously described for physical input contacts and output coils.

8-3

Once you understand this fundamental principle of interpreting a ladder
diagram, everything should become clearer and simpler. Ladder
diagram programming can be used to create a rather sophisticated
control system. However, In TRILOGI we augment its power further by
allowing a ladder program to activate customized functions created in
TBASIC.

. Relay Coils

A contact can also be activated by the presence of an electrical
current. This makes it possible for a confrol system to control the tuming
ON or OFF of a large load by using electrical current to activate a switch
that can conduct high current. The simplest form of this type of contact is
a relay.

In fraditional electromagnetic relay, a coil of wire is wound around an
iron core that tums it into an electromagnet. When current passes
through the "coil' the magnet is "energized" and the force is used to
either close a contact (that makes it a normally-open contact, closed
only when energized) or open it (that will be a normally-closed contact
since it is closed when not energized).

Ladder Logic programming language borrows some of those terms used
fo describe the electromnagnetic relay for its own use. You connect a
relay coil to the right end of the ladder diagram just like an output, as
follow:

Start Stop Artive
—1 2 A2 {RLY)
Active
| |cl
11
Active Lamp
1 (ouT)

In a PLC, there are hundreds of internal "relays" that are supposed to
behave like the typical electromagnetic relay. Unlike an output (e.g. the
"Lamp" output) which has a physical connection out of the PLC, when an
internal relay is turned ON, it is said 1o be "energized" but you will not see
any changes in the PLC's physical I/Os. The logic state is kept internally in
the PLC. The contact of the relay can then be used in the ladder
diagram for turning ON or OFF of other relays or outfputs. A relay contact
in the ladder diagram can be Normally-Open (NO) or Normally Closed
(NC) and there is no limit to the numiber of contacts a relay can have.

8-4

3. Out Colls

A PLC output is really just an internal relay with a physical connection that
can supply electrical power to confrol an external load. Thus, like a relay,
an output can also have unlimited numioer of contacts that can be used
in the ladder program.

4. Timer Coils

A timer is a special kind of relay that, when its coil is energized, must wait
for a fixed length of time before closing its contact. The waiting time is
dependent on the "Set Value" (SV) of the timer. Once the delay time is
up, the timer's N.O. contacts will be closed for as long as its coil remains
energized. When the coil is de-energized (i.e. turned OFF), all the fimer's
N.O. contacts will be opened immediately.

However, if the coil is de-energized before the delay time is up, the timer
will be reset and its contact will never be closed. When a last aborted
timer is re-energized, the delay timing will restart afresh using the SV of
the timer and not continue from the last aborted timing operation.

5. Counter Coils

A counter is also a special kind of relay that has a programmable Set
Value (SV). When a counter coil is energized for the first time after a reset,
it will load the value of SV-1 into its count register. From there on, every
time the counter coil is energized from OFF to ON, the counter
decrements its count reqister value by 1. Note that the coil must go
through OFF o ON cycle in order to decrement the counter. If the coil
remains energized all the time, the counter will not decrement. Hence
counter is suitable for counting the number of cycles an operation has
gone through.

When the count register hits zero, all the counters N.O. contacts will be
turned ON. These counter contacts will remain ON regardless of whether
the counter's coil is energized or not. To turn OFF these contacts, you
have 1o reset the counter using a special counter reset function [RSctr].

8-5

Il. Special Bits

TRILOGI contains a numiber of special purpose
bits that are useful for certain applications. These
include 8 clock pulses ranging from periods of

£ 1/0 Labels
4 | Special Bits

0.01 second to 1 minute, a "Normally-ON" flag [#- ame -

and a "First Scan Pulse", efc. B [ormally ON <
El 1stScan
0.01s Clock

To use any of these bits, enter the ladder editor 0.0s Clock
0.058s Clock

and create a "contact"; when the |/O table pops 312 S S:DCE

up. scroll the windows until a "Special Bits" menu 05 Clock

pops up. This menu is located affer the "Counter (B 1-0s =aek,

Iable" and before the "Input' table. as shown |EEE| RTC Error o
<

below:

1. Clock pulse bits

The 8 clock pulses supported by TRILOGI are:
Clock Pulse Period Ladder Symbol

0.01 second Clk:.0Ts
0.02 second Clk:.02s
0.05 second Clk:.05s
0.1 second Clk:0.1s
0.2 second Clk:0.2s
0.5 second Clk:0.5s
1.0 second Clk:1.0s
1 minute CIk: Tmin

A clock pulse bit is ON for the first half of the rated period, then OFF for
the second half. Duty cycles for these clock pulse bits are therefore
50%, as follow:

Clk:0.15 (0.1 second Clock Pulse)

| 0.05s . 0.05s | :
o ————— |

The clock pulse bits are often used with counter instructions to create
fimers. Additionally, they can be used as timing source for "Flasher"
circuit. A reversible counter can also work with a clock pulse bit to

8-6

create secondary clock pulses of periods that are multiples of the basic
clock pulse rate.

2. SeqN:X

These are special "Sequencer" contacts which are activated only when
the step counter of a Sequencer N reaches step #X. E.g. a Normally
Open contact Seg2:6 is closed only when Sequencer #2 reaches Step
#6. At any other step, this contact is opened.

3. Normally ON Flag - Norm.ON

You can make use of this flag if you need to keep something
permanently ON regardless of any input conditions. This is because
with the exception of Interlock Off function [ILoff], a cail or a
special function is not allowed to connect directly to the power line
(the vertical line on the left end of the ladder diagram). If you need to
permanently enable a coil, consider using the "Normally-ON" bit from
the "Special Bits" menu, as follow:

|W Light

| | —= {oLT)

4. First Scan Pulse - 1st.Scan

This special bit will only be turned ON in the very first scan fime of the
ladder program. After that it will be permanently tumed OFF. This is
useful if you need tfo initialize certain conditions at the beginning. When
the program is fransferred to the PLC, this bit will only be ON when the
PLC is first powered up or after it has been reset.

5. Real Time Clock Error - RTC.Err

M-Series PLC

This bit is turned ON if the M-series PLC does not have battery-
backed MX-RTC option and the clock has been reset due to
power failure or watchdog fimer reset. This gives warning to
applications that require a correct real world time (such as
scheduled ON/OFF operation) that the clock data is incorrect,
hence enabling corrective action to e taken.

F-Series PLC

Since the F-Series PLCs do not use the MX-RTC and instead have
an on-board batter-backed RTC, the RTC Error event occurs if the
RTC is corrupted or damaged (see the F-Series User Manual -

8-7

section 12.8 for more detail) or if the battery is not installed. The
special bit is called RTC.Er and can be obtained from the
"Special Bits” /O Table. The RIC.Er contact can be used to
activate an alarm of some kind.

8-8

lll. Special Functions

During ladder circuit editing, when you click on the [=tFrils| or [Frlal icon to
create a special function coil, a special function menu will pop up as
shown below:

Select a Function

L

1. [DHMCtr] - Decrement Rev. Counter
2.[R3Ctr] - Reset Counter

3. [UpCtr] - Increment Rev. Counter
4, [AVseq] - Adwvance Sequencer

5. [R3s3eg] - Eeset Sequencer

6. [Stepl] - Set Sequencer to Step #N
7.[Latch] - Latching Relay/0utput
g.[Clear] - Clear Latched Relay

9. [ILock] - Interlock Begin

L. [ILoff] - Interlock End

B. [dDIFU] - Differentiate Up
C.[dDIFD] - Differentiate Down
D.{CusFn} - Custom Function
E.{dCusF} - Diff. Up Custom Funcs
F.[MaR5T] - Master Reset

1. Reversible Counter Functions: [DNctr], [Upctr] and [RSctr]

The [DNctr], [UPctr] and [RSctr] functions work together to implement
reversible counter functions on any of the 128 counters supported by
TRILOGI.

The ordinary down counter (created by clicking on the icon]
essentially decrements the counter value by 1 from the "Set Value" (SV)
and will stop when its count becomes zero. Unlike the ordinary down
counfer, a reversible countfer is a circular counter that changes the
counter present value (PV) between 0 and the SV. When you try to
increment the counter past the "Set Value", it will overflow 1o become
'0". Likewise if you try to decrement the counter beyond 'O, it will
underflow to become the "Set Value".

All three counter functions [DNctr], [UPctr] and [RSctr] can operate on
the same counter (i.e. assigned to the same counter label) on different
circuits. Although these circuits may be located anywhere within the
ladder program, it is recommended that the two or three functions
which operate on the same counter be grouped together in the
following order: DNctr], [Upctr] and [RSctr]. Note that NOT all three
functions need 1o be used to implement the reversible counter.

8-9

Decrement Counter [DNctr]

Execution condition ©M
of [OMetr] function OFE | | | | | | | | | |

oW
-1

. 0002

Counter's Present oY-2
Value(PY) 0001
ooao
OH

Counter's contact QFF

Each time when the execution condition of a [DNctr] function
changes from OFF to ON, the present value of the designated
counter is changed as follow:

a. If the counter's present value (PV) is inactive, load the
counter register with the "Set Value" (SV, defined in the
Counter table) minus 1.

b. If the counter's present value (PV) is already ‘0, then load
the counter's PV with the SV defined in the counter table
and furn on the counters confact (also known as the
completion flag).

c. Otherwise, decrement the counter PV register by 1.

Increment Counter [Upctr]

Execution condition 2l
of [Upct] function QEE | | | | | | | | | |

=

SN 000z

Counter's Present oy
WaluelPy) 0001
o000

o]
Counter's contact QEE

Each fime when the execution condition of an [Upctr] function
changes from OFF to ON, the present value of the designated
counter is affected as follow:

a. If the counter is inactive, load the counter register with the
number '0001".

8-10

b. If the counter's present value (PV) is equal to the Set Value
(SV, defined in the Counter table), load the counter reqister
with number '0000" and furn on the counter's contact (also
known as the completion flag).

c. Otherwise, increment the counter PV register by 1.

Reset Counter [RSctr]

When the execution condition of this function changes from OFF
to ON, the counter will reset to inactive state. This function is
used to reset both a reversible counter and an ordinary down-
counter coil.

2. Sequencer Functions: [AVseq], [RSseq] and [StepN]

Please refer to the later section in the chapter on “Using TRILOGI
Sequencers”

3. Latch Relay Function [Latch]

Latching relay is convenient for keeping the stafus of an execution
condition even if the condition is subsequently removed. The program
elements that are assigned as Latching Relays will remain ON once
they are energized. Only Relays and Outfpufts may be assigned as
Latching Relays.

On selecting [Latch] function, you can use the left/right cursor keys or
click on the left/right arrow keys to move between the Relay and
Output tables. The selected relay or output will now be assigned as a
Latching Relay. You will be able 1o see the label name of the program
element above the [Latch] symibol in the ladder diagram.

Although lafch-relay can be used in place of self-latching (Seal)
circuits, a latch-relay in an interlock section will not be cleared when
the interlock occurs. Only a self-latching circuit as shown in the
following will be cleared in an interlock section:

Start SIWF R
r 171 (R L)
CR1

4. Clear Relay Function [Clear]

To de-energize a program element that has been latched by the
[Latch] function, it is necessary to use [Clear] function. On selecting
[Clear], choose the output or relay to be de-energized. When the
execution condition for that circuit is ON, the designated output or

8-11

relay will be reset. In the ladder diagram, the program element label
name will be shown above the [Clear] symbol.

If the execution condition for [Latch] and [Clear] functions are both ON
at the same time, then the effect of the designated bit depends on
the relative locations of these two functions. Remember that an
output or relay bit energized by [Latch] will remain ON until it is turned
OFF by [Clear]. It is recommended that [Clear] circuit be placed just
after the [Latch] circuit for the same output or relay controlled by these
two functions. This ensures that [Clear] function has higher priority over
[Latch] function, which is normally so in hardware latch-relay or other
industrial PLCs.

5. Interlock [ILock]

The "Interlock" [ILock] and "Interlock Off" [ILoff] functions work together
to contfrol an entire section of ladder circuits. If the execution
condition of a [ILock] function is ON, the program will be executed as
normal. If the execution condition of [ILock] is OFF, the program
elements between the [ILock] and [ILoff] will behave as follow:

All output coils are turned OFF.

All timers are reset 1o inactive.

All counters retain their present values.

Latched relays by [Latch] function are not affected.
[dDIFU] and [dDIFD] functions are not executed.

All other functions are not executed.

~0000TQ

An Interlock section is equivalent to a master control relay controlling a
number of sub-branches as follow:

Using Interlock Functions Equivalent Circuit

r-.ﬂaslter
I

! —— | Master LS CR
S T R EEEEEEEE RS B 1 (RLY)
Y (RLY) | Ls2 11I_::min

Ls2 10min overhe)
_| I {TI) Interlclck|
Eierhe%t Section = outl

S Ot | U
— | {OUT)
. Lo

{ILoff] |

Note that [ILoff] is the only function that does not need to be
energized by other program elements. When you use one or more
[ILock] functions, there must be at least one [ILoff] function before the

8-12

6.

end of the program. Otherwise the compiler will warn you for the
missing [ILoff]. The logic simulator always clears the Interlock at the
end of the scan if you omit the [ILoff] function.

You can program a second or third level Interlock within an Inferlock
sectfion using a few [IlLock] functions. However, you only need to
program one [ILoff] function for the outermost Interlock section, i.e.
[ILoff] need not be a matching pair for an [ILock] function.

Differentiate Up and Down [dDIFU] and [dDIFD]

When the execution condition for [dDIFU] goes from OFF to ON, the
designated output or relay will be turned ON for one scan time only.
After that it will be turned OFF. This means that the function generates a
single pulse for one scan time in response to the rising-edge of ifs
execution condition. When its execution condition goes fromm ON to
OFF nothing happens to the output or relay that it controls.

On the other hand, when the execution condition for [dDIFD] goes
fromm ON to OFF, the designated output or relay will be tumed ON for
one scan time only. After that it will be turned OFF. This means that the
function generates a single pulse for one scan time in response to the
frailing edge of its execution condition. When its execution condition
goes from ON to OFF, nothing happens to the output or relay that it
controls.

Execution |

L OH
Condition OFF ’

I
|
[DIFUlfunction g |

| | |
| | |
| I
EIL,It'EIUt OFF ' : . :
| I I
[DIFD] function o, |
|
| |
| |
| I

|
|
output opp |
: |
! |
|

7. Custom Functions: [CusFn] and [dCusF]

These two functions allow you to connect a user-defined custom
function (CusFn) to the ladder logic as if it is a relay coil. Custom
functions are created using the integrated text editor provided by
TRILOGI Version 6.x.

8-13

8. Master Reset

An ON condition to this function clears all mailbox inputs, outputs,
relays, fimers and counter bits to OFF, resets all fimers
counters/sequencers to inactive state, and clears all latched relay bits.
All infeger variables will be cleared to zeros and all string variables will
be assigned to empty string.

IV. Using TRILOGI Sequencers

A sequencer is a highly convenient feature for programming machines or
processes that operate in fixed sequences. These machines operate in
fixed, clearly distinguishable step-by-step order, starting from an initial step
and progressing to the final step and then restart from the initial step
again. At any moment, there must be a "step counter' to keep track of
the current step numiber. Every step of the sequence must be accessible
and can be used fo frigger some action, such as tuning on a motor or
solenoid valve, etc.

As an example, a simple Pick-and-Place machine that can pick up a
component from point 'A' to point 'B' may operate as follow:

Step # Action

0 Wait for "Star" signall
Forward arm at point A
Close gripper
Retract arm at point A
Move arm to point B
Forward arm at point B
Open gripper
Retract arm at point B
Move arm to point A

0| N OO BN~

TRILOGI Version 6 supports eight sequencers of 32 steps each. Each
sequencer uses one of the first eight counters (Counter #1 to Counter #8)
as its step counter. Any one or all of the first eight counters can be used
as sequencers "Seq1" to "Seq8".

To use a sequencer, first define the sequencer name in the Counter table
by pressing the <F2> key and scroll to the Counter Table. Any counter to
be used as sequencer can only assume label names "Seql" to "Seqg8"
corresponding to the counter numbers. For e.qg. if Sequencer #5 is to be

8-14

used, Counter #5 must be defined as "Seg5". Next, enter the last step
number for the program sequence in the "Value" column of the table.

Construct a circuit that uses the special function "Advance Sequencer"
[AVSeq]. The first time the execution condition for the [AVseq] function
goes from OFF to ON, the designated sequencer will go from inactive to
step 1. Subsequent change of the sequencer's execution condition from
OFF to ON will advance (increment) the sequencer by one step. This
operation is actually identical to the [UPctr] instruction.

The upper limit of the step counter is determined by the "Set Value" (SV)
defined in the Counter table. When the SV is reached, the next
advancement of sequencer will cause it to overflow to step 0. At this time,
the sequencer's contact will turn ON until the next increment of the
sequencer. This contact can be used to indicate that a program has
completed one cycle and is ready for a new cycle.

Accessing individual steps of the sequencer is extremely simple when
programming with TRILOGI. Simply create a "contact" (NC or NO) in ladder
edit mode. When the |/O window pops up for you to pick a label, scroll o
the "Special Bits" table as follow:

The '"Special Bits" table is located after the
"Counters" table and before the "Inputs" table.

£ 1/0 Labels
4 | Special Bits |
| Label Marme |

Then click on the "SegN:x" item to insert a

Seghx . \
E Nncr:lmalhr OM = seguencer bit. You will be prompted to select a
ietscan sequencer from a pop-up menu. Choose the
Dhas Clock desired sequencer (1 to 8) and another dialog
312 5 glncE box will open up for you to enter the specific
B ee Clot step number for this sequencer.
EEW| 1.0s Clock
EEE 1 min Clock
EFl RTC Error A"
<

Each step of the sequencer can be programmed as a contact on the
ladder diagram as "SegN:X" where N = Sequencers # 1 to 8. X = Steps #
0-31.

e.g. Seq2:4 = Step #4 of Sequencer 2.
Seqb:25 = Step #25 of Sequencer 5.

Although a sequencer may go beyond Step 31 if you define a larger SV
for it, only the first 32 steps can be used as contacts to the ladder logic.
Hence it is necessary to limit the maximum step number to not more than
31.

8-15

1. Special Sequencer Functions

Quite a few of the ladder logic special functions are related to the use
of the sequencer. These are described below:

Advance Sequencer - [AVseq]

Increment the sequencer's step counter by one until it overflows. This
function is the identical to (and hence interchangeable with) the
UpCtr] function.

Resetting Sequencer - [RSseq]

The sequencer can also be reset to become inactive by the [RSseq]
function at any time. Note that a sequencer that is inactive is not the
same as sequencer at Step 0, as the former does not activate the
SegN:0 contact. To set the sequencer to step 0, use the [StepN]
function described next.

Setting Sequencer to Step N - [StepN]

In certain applications it may be more convenient to be able to set
the sequencer 1o a known step asynchronously. This function will set the
selected sequencer to step #N, regardless of its current step number
or logic state. The ability to jump steps is a very powerful feature of the
sequencers.

Reversing a Sequencer

Although not available as a unique special function, a Sequencer may
be stepped backward (by decrementing its step-counter) using the
[DNctr] command on the counter that has been defined as a
sequencer. This is useful for creafing a reversible sequencer or for
replacing a reversible "drum" controller.

2. Other Applications

Q. Driving Stepper Motor

A sequencer may be used to drive a stepper motor directly. A two-
phase stepper motor can be driven by four tfransistor outputs of the
controller directly (for small motors with phase current < 0.5A) or via
solid-state relays. The stepper motor can be driven using a
sequencer that cycles through Step#0 to Step#3 (full-step mode) or
Step#0 through Step#7 (half-step mode). Each step of the
sequencer is used to energize different phases of the stepper
motor. A clock source is needed to drive the stepper motor through

8-16

its stepping sequence. The stepping rate is determined by the
frequency (which is equal to 1/period) of the clock source.

Clock pulses with periods in multiples of 0.01 second can be
generated easily using the "Clk:.01s" bit and an [Upctr] function. For
e.g., to generate a clock source of period = 0.05s, use "CIk.0Ts" to
feed to an [Upctr] counter with Set Value = 4. The counter's contact
(completion flag) will be turned ON once every 5 counts (0,1,2,3,4),
which is equivalent to a 0.05 sec. clock source.

b. Replacing a Drum Controller

A drum controller can be replaced easily by a sequencer if the
timing of the drum's outputs can be divided into discrete steps.
Assuming a drum confrols two oufputfs with the fiming diagram
shown in the following figure:

R N S S A A T
o o e B M o o LY
'_| éli:iﬁompma

This can be replaced by an 8-step sequencer. Step 1 (e.g "Seql:1")
turns ON and latch Output A using [Latch] function, Step 2 turns ON
and latch Output B, Step 4 tuns OFF Output A using the [Clear]
function, and Step 6 turns OFF Output B. All other steps (3,5,7,0)
have no connection.

3. Program Example

Assume that we wish fo create a running light pattern which tums on
the LED of Outputs 1 to 4 one at a time every second in the following
order. LED1, LED2, LED3, LED4, LED4, LED3, LED2, LEDT, all LED OFF
and then restart the cycle again. This can be easily accomplished
with the program shown in Figure 6.9.

Clk1.0s Seqd
— | [Avseq]
Seg LED1
—] (ouT)
Seqld:8
{ }
SeglZ LEDZ
—] (ouT)
Segd: 7
{ }
Segd:3 LED3
—] (ouT)
Seqlb
{ }
Seq.l?_:fl LED4
— | (LT
Seqlo
{ }
Stop Seq2
— | [RZseq]

Figure 6.9

The 1.0s clock pulse bit will advance (increment) Sequencer #2 by one
step every second. Sequencer 2 should be defined with Set Value = 8.
Each step of the sequencer is used as a normally open contact 1o furn on
the desired LED for the step. A "Stop" input resets the sequencer
asynchronously. When the sequencer counts to eight, it will become Step
0. Since none of the LED is tumed ON by Step O, all LEDs will be OFF.

8-18

Chapter 9: Introduction to TBASIC Custom Functions

Overview

TRILOGI Version 6.x supports user-created special functions, known as
Custom Functions (the symbol CusFn will be used throughout this manual to
mean Custom Functions). Up to 256 CusFns can be programmed using a
special language: TBASIC.

TBASIC is derived from the popular BASIC computer language widely used
by microcomputer programmers. Some enhancements as well as
simplifications have been made to the language to make it more suitable
for use in PLC applications.

There are three simple ways to create a new CusFn:

1. From the "Edit" pull-down menu, select the item "Edit Custom Function"
and select the function number from a pop-up CusFn selection table
that may range from 1 to 256. The selection table allows you to define
unigue and easily identifiable names for each custom function. Once
you have selected the custom function the editor window will open up
with the contents of that particular custom function.

2. You may also use the hotkey <F7> to open up the selection table.

3. If you have already created a ladder circuit which connects to either a
[CusFn] or [dCusF] function (both appear as menu-items within the
"Special Function" pop-up menu), then you can easily open up that
particular CusFn by double clicking the left mouse button while the
highlight bar is at the [CusFn] or [dCusFn]. Alternatively, you can open
the CusFn by clicking the right mouse button while the highlight bar is at
the [CusFn] or [dCusFn].

. Custom Function Editor

The custom function editor window allows creation of any number of lines of
TBASIC program statements. Since this is a standard text editor, you should
have no problem using the key and mouse controls to edit the text. Pressing
<F1> at the text editor window opens up a Help screen that will show you
the common keys and mouse actions. E.g. To copy a paragraph of text,
select it using the mouse and the press <Ctrl-C>. Move the text editing
cursor 1o the destination and press <Ctrl-V> to paste it to the new location.

9-1

NEWI! Trilogi 6.2 and up infroduces a brand new custom function editor. The
custom function editor now has a whole new interface with split panes that
provide text editing for writing code (just like before) on the upper pane and
a web browser/TBASIC help information on the lower pane. When the
custom function editor is opened, the upper text editor pane will contain the
TBASIC program code of the custom function to be edited, and the lower
pane will be a browser that displays some information about Triangle
Research, our products, or software update information (see below). The
lower pane can also be used to display TBASIC keyword help or provide help
information about a selected I/O label name when the <F1> key is

pressed.

['ed Custom Function #32 - CheckPLC

ENDIF

L=a0
FOR I =1 to 10
L = B+RADC(1}

NEXT
DM[300] = As10
B=0

FGR I =1 to 10

I = DaDTW {3

' read UUT power consumption

I

[4]

[=llE =

Control

Find H Find All ‘

‘32-CheciﬁPLC ‘v!

N[N | NES =

‘ Rename Function

s 2 2
— 2 OrderiSales +1-877-TRI-PLCS / +1-877-874-7527
| I—Rﬁ Inquiry: (8:30am to 5:00pm PST: Mon-Fri)

[l

1] Il

[«]

“Jiew Other Functions

‘ - Keyword Helps - ‘v

‘ Undo H Abort

The following functions have been added to the custom function editor
(Trilogi 6.22 or higher is required where explicitly mentioned, otherwise Trilogi

6.2 is sufficient) :

1. Split Pane Window

The upper pane is used as a text editor for writing TBASIC code and the
lower pane can either display information about Triangle Research (as
shown above), provide immediate help for any TBASIC keyword or 1/O

label referred to in the Custom Function.

e TJo use the lower pane for help on TBASIC keywords, simply select the
keyword from the “Select Keyword” drop box or highlight the text in the
editor and press <F1> to display the syntax of the keyword. For
example: in the following screenshot, the code "SETLCD" is highlighted

9-2

and if the <F1> key was pressed, the syntax for "SETLCD" would be

displayed as it is in the screenshot.

E Custom Function #1 - Event_Count ==]
o = Control
= ;xl+1 ' Initial value of X = 0 e
S'Em::n| 1,1, "Cycle Count = "+SIBS{X) Find H Find All |
|1-E'.rent_{20unt | b |

i —— o] | sl s bz |22

T b R R A A o N e A o e A R e s A N b A A A N N b B

SETLCD n, offfet, x3 =l | Rename Function |

Purpose To display the string expression x§ on Line #nr on built-in ||= :

alphanumeric Liguid Crystal Display (LCD) or compatible || | |Vsew{m|erFunmons |'|

Vacuum Fluorescent Display (VFD). x§ may be formed by

concatenation of various strings using the '+' operator (e.g. |_|(emm Helps - |v|

Temp ="+STREAIHCHRS(223+" C7). Integers must be

converted to string using the STRE() or HEXS() function to be

accepted by this function. | Undo | ‘ Abort |
Special case: if n =0 the string x§ will be sent to il
the LCD's “Instruction-Register” which allows -

e \ersion 6.24 also added the following features: If the selected text is
an /O label name and <F1> key is pressed, the lower pane will
display its /O type and the 1/O number.

[% Custom Function 32 - CheckPLC

FOR I =1 to 10 - Control

A = R+RADC(3) Find H Find All |

HEXT = |

CM[301] = Af10 ' read UUT ADC power.

‘32-Clle{.kPLC ‘ » |

IF TESTIO(TstInErog)=0 " I/0 test not started

IF TESTIO(FPLC)
SETLCD 1,1," F-series PLCs Teat " l | =5 H = H e || 22 ‘
ELSE il

4]

I —— ibLEI L1 Rename Function |

TstInProg = Relay #20 e

‘Wew Other Functions ‘ - |
‘ - Keyword Helps - ‘V|
< I 31 | Undo || et |

e Also starting from Version 6.24, if the selected text is the name of a
custom function and <F1> key is pressed, a special read-only
popup window will appear which displays the content of the selected
function. This enables the programmer to view the code of another
custom function CALLed by this function without leaving the current

function.

9-3

E Custom Function #7 - xFPLCProg = (&=

= Control
Xe="C2": call SendietCmd — ,)
IF DM[200] status = 0 ' Failed to set BLC's ID. Erchably COM= Find H Find Al |
RETURN CALL |
ENDIF
E View Custom Function # 20 - sendNetCmd ==
PRINT #4 "</>" ' Close Ethernet Connectio||' Input string = ¥& =
CALL RdCommd ' clear buffer. ' putput string = X$
CALL ConnEthernet ' Connect to UUT wia |+ PRINT #1 "RO1™+Xs L
H=4 " Use Ethernet Port to transfer O me — MIDS (X¢,1,2) —|
T — IF STRCME (¢, "CE") =0
T = MIDS (X%, 3,2)
S S S FLIE
— Order/Sales +1-877-TRI-PLCS / IF STRCMP(T$, "CT")=0
l"ﬂﬂ Inquiry: (8:30am to 5:00pm P e
ELSE
IF STRCMP(T%,"WA")=0 OR STIRCMP(T%, "RA")=0
T¢ = MIDS (X5, 4,2)
4] I o
Iz = "7
ENDIF =
. I [
2. Non-Modal

The custom function editor is not modal anymore. This means you can
place the custom function editor in front, side by side, or behind the
ladder editor. This makes for easier reading of the program code.

Search Function

It is now possible to search for a word or phrase in the current custom
function (local search) or in all of the custom functions in your program
(global search).

To do a local search, simply type the text in the command line below
the "Find" and "Find All' buttons and then click the "Find" button. If the
text is found in the current custom function, it will be highlighted in the
text editor as shown below. Also, the text "Find only in this CusF" will be
displayed below the command line in the search areq, indicating a
local search. Each time the "Find" button is clicked, the next instance of
the search text will be highlighted until the text cant be found anymore.
At this point the message in the search area will change to "Text Not
Found" and the next tme "Find" is clicked, the first result will be
highlighted again.

9-4

¥E Custom Function #1 - EventCount

=l Control

- E)X]

= ¥+l ' Initial wvalue of ¥ = 0

SETLCD 1,1, "Cycle Count = "+3TRS () Find

Find All

¥

Find only in this CusF

To do a global search, simply type the text in the same command line
and click the "Find All' bufton. If the text is found in any custom function
within the program, it will be highlighted in the text editor as shown
below. Also, the text "Find in all CusF" will be displayed below the
command line in the search areq, indicating a global search. Each
time the "Find All' button is clicked, the next instance of the search text
will be highlighted until the text cant be found anymore (in any custom
function). At this point the first result will be highlighted again. If no text
matches the search text, the message in the search area will change to

'"Text Not Found".

E Custom Function #1 - EventCount

B

Find All

| Control
® = x+1 ' Initial value of £ =0 B i
SETLCD 1,1,"Cycle Count = "+3TR$(X) Find
£
Fired in &1l CusF

NOTE: Highlighting of text found in the editor during a user initiated
search or during compilation error fracking now works with JRE (Java

Runtime Environment) 1.5 and 1.6

9-5

4. Function Navigafion

Custom Function 27 - xFPLCProg

X$="C2": call sendNetCmd

IF DM[200]_status = 0 ' Failed to set PLC's ID.
RETURN

ENDIF

Probably

PRINT #4 "</>"
CRALL RACommd
CRLL ConnEthernet

' Close Ethernet Connection
' clear buffer.

' Connect to OUT via Ethernet
=4 ' Use Ethernet Port to transfer program

IF STRCME (R&, "<CONNECTED>")<> 0

CoM

LT T

[4]

=5 [r=Ex")

Control

Find ||

Find All

Select Function to Edit

K

Select Function to Edit
1-xReady

2-xMDRdy

3-xMDprog

4-TestMD

5-xE10Prog
6-xE10Ready
7-xFPLCProg
&-xFPLCRdy

9 TestMX3224

T e e e e AL e e e e e e e
R T]
— 2 Order/Sales +1-877-TRI-PLCS [/ +1-877-874-7527
| I—-K')q Inquiry: {B:30am to 5:00pm PST; Mon-Fri) i
L1 L \s

10-TestM®4832
11-TestE10
12-TesiT22
13-TestT44

[4]

1 Il

[¥] 14-TestT28

15-TestT40

[T w

4|

Alternatively, you can scroll from one custom function to the next one

<

using the
]

and

and

=

keys. However, clickihg on the

<<

buttons allows you to scroll to the previous or the next non-

empty CusFn. All empty functions will be skipped. This is useful if you
need to browse through all the custom functions to locate something.

5. View Other Functions

In i-TRILOGI version 6.24, a "View Other Functions" choice box replaces
the "Copy Text To Lower Pane" button in earlier 6.22 or 6.23 versions. This
choice box allows you to view another custom function via a read-only
popup window without leaving the currently edited custom function. This
is very convenient when you need to view the content of another
custom function while editing one custom function.

9-6

Custom Function 27 - xFPLCProg = =R =
g Control
Xe="C2": call sendiNetCmd I . .
IF DM[200] status = 0 " Failed to aet FLC'a ID. Probably CoM= find || fd A8 |
RETUEN |
ENDIF
PRINT #4 "</>™ ' Close Ethernet Connecticon ‘SeledF“"Cﬂo"mEd“ |v|
CALL RdCommd ' glear buffer.
CALL ConnEthernet ' Connect to UUT wia Ethernet | e H = H = H == ‘
i ' TUse Ethernet Port to transfer program
‘ Rename Function |
IF STRCMP (RS, "<CONNECTED>")<> 0 -
T [»| | |view OtherFunctions -
B L R A R G R A I R A mmrru“ :
LECE C L < — =
Order/Sales +1-877-TRIPLCS / +1-877-874-7527 3 Sy =
|"ﬂ! Inquiry: (8:30am to 5:00pm PST; Mon-Fri) _| | |[¢-*xMDRdy
—R 3-xMDprog
| | |[#-TestMD
5-xE10Prog
= 6-xE10Ready
4] m | Pl_ T-XFPLCProg
8-xFPLCRdy =

6. Undoing Changes

In previous versions of Trilogi it was only possible to undo a mistake by
using the <Citrl-z> shortcut key. Trilogi 6.2 allows you to use the <Citrl-z>
shortcut key as well a new "Undo" button.

The "Undo” button (shown below) can be used to undo the last change
to the text in the currently opened Custom Function.

Undo

/. Exiting the Editor

In previous versions of Trilogi it was only possible to exit a function using

the <ESC> key or by clicking the . button in the top-right corner of the
editor. Trilogi 6.2 allows you to use the same methods as before, as well
as the option of clicking the new "Abort" button.

The “Abort” button (shown below) can be used to abort any changes
made to the currently opened Custom Function since it was opened
and close the custom function editor.

9-7

lll. Custom Function Execution

It is important to understand when and how a TBASIC-based Custom
Function is executed with respect to the rest of the program. There are
basically two ways in which a CusFn will be executed:

1. Triggered by Ladder Logic Special function coil {CusFn}

A custom function may work the same way as any other special
functions in the TRILOGI ladder diagram programming environment.

When you are in ladder circuit edifing mode, select the L=l or [<Frld]
icon to create a special function output. A pop-up "Select a Function"
menu will appear.

B% i-TRILOGI Version 6.20 - [C:\TRILOGITL 6\usr\samples\if-Then-Eise.PC6] - (... [= |[B][X]
File Edit Controller Simulate Circuit Help

T o P e P B e P e o I

IF . THEN.. ELSE. ENDIF |l Ll X

1.[DNCtr] - Decrement Rewv. Counter
Z2.[R3Ctr] - Reset Counter

3.[UpCtr] - Increment Rewv. Counter
4. [AV=eq] - Advance Sequencer

5. [R3seq] - Beset Zequencer

6. [3teplN] - Zet 3equencer to Step HW
T

g.

9

&,

TEASIC support the block structure of
Each IF must be matched by an EMDI

Compare
I

[Latzh] - Latching Relay/Output =
[Clear] - Clear Latched Eelay
Comparison operators are: » = < =§2+ [ILock] - Interlock Begin
== is the NOT-EQUAL operator lbotil = IRcbohenh Eho

These aperatars anly work for integellB. [ADIFU] - Differentiate Up
use the STRCMP fucntion (see STRIYC. [ADIFD] - Differentiate Down

D.{CusFn; - Custom Function
MOTEQUAL |E.{dCusF; Diff. Up Custom Funcs
> | 2 IlF. [MaRsST] - Master BReset _J
4 ¥

Select either item:
"D : {CusFn} - Custom Function™ or
"E : {dCusF} - Diff. Up Custom Func."

to create a Cuskn. You will be required to enter the selected custom
function number from 1 1o 256. Note that CuskFn created using

"E : {dCusF}" - Diff. Up Custom Func."
is a "Differentiated Up" instruction. This means that the function will be
executed only once every time when ifs execution condition goes from

OFF to ON (this is also known as “one-shot” action). Nothing will happen
when its execution condition goes from ON to OFF.

9-8

On the other hand, using 'D: {CusFn} - Custom Function' means
that the Cuskn will be executed every scan as long as its execution
condition is ON. This is often not desirable and the coil created using
this menu ifem will be highlighted in RED color fo serve as an alarm fo
programmer. You will probably find that you will use the differentiated
form {dCusF} far more frequently.

. Periodic Execution of a Custom Function

There are many situations when you need the PLC to periodically
monitor an event or perform an operation. For example, to monitor the
temperature reading from a probe or to check the real time clock for
the scheduled time, and to continuously display changing variables on
the LCD display. It is not efficient to use the continuous {CusFn}
function for such purposes. It is far better to use the built-in clock pulses
to frigger a differentiated Custom function {dCusF}. You can choose a
suitable period from 0.01s, 0.02s, 0.05s, 0.1s, 0.2s, 0.5s, 1.0s and 1
minute for the application. Other periods can also be constructed with
a self-reset timer. The custom function will only be executed once every
period controlled by the system clock pulse or the timer, as follow:

‘ Run Clko1s A Function
| | | | | 2 1dCusF)

For example, you don't need to update the value of a variable
displayed on the LCD screen any faster than the human eye can read
them. So using a 0.5s clock pulse may be sufficient and this will not
take up too much CPU time for the display. For slow processes such as
heating, a 1.0s clock pulse to monitor temperature change is more
than sufficient.

IMPORTANT

i. When the CPU scans the ladder logic up to a circuit that contains a
CusFn, and the execution conditon of the circuit is TRUE, the
corresponding CuskFn will be immediately executed. This means that
the CPU will not execute the remaining ladder circuits until it has
completed execution of the current CusFn. Hence if the CusFn modifies
a certain /O or variable, it is possible to affect the running of the
remaining ladder program.

i. Note that the INPUT[n] variables contain data obtained ot the
beginning of the ladder logic scan and not the actual state of the
physical input at the time of the CusFn execution. Thus, it will be futile
to wait for the INPUT[N] variable to change inside a CusFn unless you
execute the REFRESH statement to refresh the physical /O before you
examine the INPUT[N] variable again.

9-9

Vi,

Vii.

Likewise, any changes to the OUTPUT[N] variable using the SETBIT or
CLRBIT statement will not be transferred 1o the physical outputs until the
end of the current ladder logic scan. Hence do not wait for an event
to happen immediately after executing a SETBIT or CLRBIT statement
on an OUTPUT[N] because nothing will happen to the physical output
until the current ladder logic scan is completed.

If you want to force the output to change immediately you will need
to execute the REFRESH statement. Consideration must be given to
how such an act may affect the other pars of the ladder program
since not the entire ladder program has been executed. REFRESH may
also take a long time to execute (e.g. it takes 2ms to execute a
REFRESH statement on a TI0OOMD+ PLC) so it can increase the
program scan time significantly.

Like all ladder circuits, the relative position of the circuit that triggers
the CusFn may affect the way the program works. It is important to
consider this fact carefully when writing your ladder program and
TBASIC CusFns. Always remember that the CPU executes the ladder
logic and CusFn sequentially, even though the equivalent circuits in
hard-wired relay may seem to suggest that the different rungs of
ladder circuits were to work simultaneously.

In line with the typical Ladder Logic programming rules, a CusFn may
appear only once within the ladder diagram, regardless of whether it
appears in the normal or differentiated form. A compilation warning
will occur if a CusFn appears at more than one circuit, but you are
given the option to overide it to give you more flexibility in your
programming.

A CuskFn may be "CALLed" as a subroutine by any other CusFn
and there is no restriction placed on the numiber of repeated
CALL of a CusFn by more than one CusFn. A CusFn may also
modify the logic states of an I/O element or the value of infernal
timers and counters using its powerful TBASIC commands (such
as SetBit, CIrBit). The compiler however will not alarm the user that
a CuskFn may inadvertently alter the logic state of an /O already
controlled by some other ladder circuit.

The programmer must therefore handle this power and flexibility offered
by the TBASIC-based custom functions with greater care. It is important
to prevent conflicting oufput conditions due to an I/O being controlled
or modified at more than one place within a logic scan. The net result is
that the logic state of the I/O appears to be in different states at
different parts of the ladder circuit. This could lead to spooky outcomes
that may be difficult to trace and debug.

9-10

3.

Interrupt Service CusFn

A CusFn may also serve as an 'Inferrupt Service Routine" which is
executed asynchronously from the normal ladder logic execution. An
interrupt-driven CusFn is run when the condition that causes the interrupt
occurs. The response time to execution is very short compared to the
scan time of the ladder program. There are several inferrupt sources
that can trigger a CusFn:

Q)

b)

Special Interrupt inputs

An M-series/F-series PLC contains some special "Interrupt" inputs
which, when enabled by the INTRDEF statement, will frigger a
particular CuskFn defined in the INTRDEF statement when the logic
level at the interrupt pin changes state (either from OFF to ON or from
ON to OFF).

High Speed Counters (HSC) Reach Target Count

An M-series/F-series PLC contains some "High Speed Counter" inputs
which, when enabled by the HSCDEF statement, will frigger a
particular CuskFn defined in the HSCDEF statement when the counter
reaches a preset target count value. This enables the CPU to carry
out immediate action such as stopping a motor or performing some
computation.

IV. Simulation & Examination of TBASIC Variables

1. Simulation Run of CusFn.

TRILOGI fully supports simulation of almost all TBASIC commands. After
you have completed coding a CusFn, test the effect of the function by
connecting it to an unused input. Run the simulator by pressing <F9>
or <Ctrl-F9> key. Execute the CusFn by tuming ON its control input. If
your CusFn executes a command that affects the logic state of any
I/O, the effect can be viewed on the simulator screen immediately.

E‘g’g Programmable Logic Simulator Fn #10 Executed H=1E
ADC1-8 | | | [[[[| Wigy | Selectl Contral [

Input Tirrner Counter Relay Output Reset
start 3-949 Duration |18 |[Zeql HI.RUN = | a1 ﬂ
Enerstop i [E timZ B 291 Countool 2 B cucz
FudRew 3 tim3 B34 Countnl En Ell out s

4 0] Count 1 = E o g

[] B Count lm [Bl cuc s

B 6 6 B a6

= | | Il a7

8 [[B ot 8

=0 Em Em B Light
Mo Fon Fon Fon

A [| [| [|

12 2 2 2

v[4| | o[<« | o[«[| »[«[| B

However, if the computation affects only the variables, than you may
need to examine the internal variables.

An 1/O or internal relay bit that has been turned ON is indicated by a
RED color rectangular lamp, which simulates a LED being turned ON.
You can pause the logic simulator at any time by pressing the <P> or
<Ctrl-P> key or by clicking on the [Pause] button. Likewise the simulator
engine can be reset by clicking on the [Reset] button.

2. Simulation of ADC Inputs

Along the top edge of the Programmable Logic Simulator screen, you
will find 8 text fields adjacent to the label "ADC1-8". The programmer
can enter the expected ADC values for ADC#1 to #8 in these text
fields. In effect, these simulate the potential signal strength at their
respective ADC input pins. These values will be captured by the TBASIC
program when an ADC(n) command is executed in a custom function
for ADC #n. For M-series and F-series PLCs the ADC input values should
range between 0 and 4092.

9-12

Note: values entered at the ADC input text field_will only be updated
when the user press the <Enter> key or the <TAB> key to ensure that
only finalized entries are used by the TBASIC program. (Otherwise,
imagine if you try to enter the value 123 at ADC #1, the program would
first be receiving "1", then "12" and then "123" which was not the
intention).

. Viewing TBASIC Variables

The values of the internal variables as a result of the simulation run can
be viewed by pressing the <V> (which stand for "View") key or by
clicking on the [View] button while in the simulation screen. A pop-up
window will appear with the values of all the variables as well as special
peripheral devices supported by TBASIC. The variables are organized
intfo 4 screens. You can move from screen o screen using the left/right
cursor keys or by clicking on the navigation buttons:

Integer variables Screen

The first screen comprises all 26 32-bit integer variables A-Z, the system
DATE and TIME, ADC, DAC, PWM and the resulting values of setLED and
setlCD commands. The initial DATE and TIME figures shown during
simulation are taken from the PC's internal real-time clock values.
However, subsequent values can be affected by the values assigned
to the variable DATE[n] and TIME[N].

The present values of the first 3 high-speed counters: HSC1 to HSC3 are
also shown on this page. Note that ADC data for any particular A/D
channel #n will only be shown if an ADC(n) function has been
executed. Otherwise the ADC value shown on screen will not reflect the
frue current value of the ADC port.

£ ViewVariable - Integers

A=0 E=10 c=0 o=0 E=0
F=0 z=10 H=10 I=0 J=0
E=0 L=10 M=10 N=10 o=10
F=0 g=0 B=0 3=0 T=0
=0 v=0 =10 H=10 T=1
Z=10 H3C1=0 H2Cz=0 H2Cz=0

CHi 1 Z B 4 5 & 7 =]
ADC 1-2 |0 0 0 0 0 0 1] 1]

S-1e |0 i] u] u]]] 0 0
DAC 1-2 |0 0]]]] 0 0

2-16 |0 0 0 0 0 0 0 0
Pt 1-2 fp 0 0 0 0 0 0 0
Date: zZO06/6E/9 4 lines LCD Dizplay
Tirme: 2l:34:Z0
Day: Fri
LED

Hex | Edit | Close | » |

9-13

Data Memory Screen
The second screen displays, in 25 pages, the values of the 16-bit DM
variables from DM[1] to DM[4000]. Each page displays 16 rows x 10
columns = 160 DM variables. You can scroll up and down the pages
by clicking on the [PgUp] or [PgDn] butftons or using the corresponding
keys on the keyboard.

String Variable Screen

The third screen displays the value of the 26 string variables AS to Z$ in 4
pages, depending on the length of each string. If the execution
condition is ON and the CusFn is not of the differentiated type, then the
CusFn will be continuously executed. The result of the variable will be
continuously updated on the viewing window.

System Variable Screen

System variables such as INPUT[N] , RELAY[n] and emINT[n] are visible in
this screen. You may wish to click on the [Hex] button to view the values
in hexadecimal notation as this is more commonly used by
programmers to identify the bit patterns in these variables.

4. Changing The Contents of Variables

While the "View Special Variables" window is open, you may change the
contents of the following variables by clicking on the [Edit] bufton:

A-Z, AS to ZS, DM[n], DATE[n], TIME[n], INPUT[n], OUTPUT[n], RELAY[n],
TIMERBIT[n], CTRBIT[N], TIMERPV[n], CTRPV[n] and HSCPV[n], emINT[n],
emLINT[N].

A text entry window will pop up and you will have 1o enter the values in
the form of assignment statements, such as:

e.g. A = 5000;
DM[99]=5678:
OUTPUT[2]=&HO1AB

BS = "Welcome to TBASIC"

The variable will take up the new value as soon as it is entered, and if
the execution condition for any CusFn is ON, the simulator will process
the newly entered data immediately and produce the new outcomes.
This gives you greater flexibility in controlling the simulation process.

5. Decimal and Hexadecimal Representation

All the numeric data shown in the "Special Variables" window are by
default displayed in decimal notation. You can display the numiber in
hexadecimal format by clicking on the [Hex] button or by pressing the
<H> key. Press the <D> key if you wish to switch back to the decimal
format. This feature is very useful for programmers who are familiar with

9-14

hexadecimal representation of a binary numiber. The [Hex] button will
become the [Dec] button when you enter the Hex display mode.

V. On-Line Monitoring of TBASIC Variables

If you execute the "On-Line Monitoring/Control' command from the
"Controller" pull-down menu, TRILOGI Version 6 will continuously query the
PLC for the values of all their internal variables. These variables’ values will
be updated in real time in the "View Special Variables" window. You may
also alter the value of any variables in the PLC using the "Edit Variable"
window (by clicking on the "Edit" button at the "View xxx Variables" window.

This ability of TRILOGI 1o provide instant and full visibility of all the PLC's
infernal variables greatly facilitates the programmers’ debugging process.
The ease of programming offered by the TRILOGI programming
environment is really what really sets the M-series/F-series PLCs far ahead of
many other PLCs where both programming and debugging are really
painstaking tasks. (This is assuming they have been fully equipped with all
the expensive "opftions" to match the M-series/F-series built-in capability!)

1. PAUSE and RESET of Target PLC

During On-Line Monitoring, if the "View Special Variables" window is
opened, you can still reset the PLC's internal data by pressing the <Ctrl-
R> key. Pressing the <P> key can halt the PLC. A halted PLC can
subsequently be released from the halted mode by pressing the <P>
key again.

2. Using LCD Display for Debugging

You should take advantage of the built-in LCD display port of the
T100MD to display internal data at the location where you want to frack
their values, especially if the value changes rapidly which may not be
constantly captured by on-line monitoring screen.

VL.

Error Handling

Since the CusFn text editor does not restrict the type of text that may be
entered into its editor, the TRILOGI compiler will have 1o check the syntax
of the users TBASIC program to look out for misspelling, missing
parameters, invalid commands, etc. Such errors, which can be tfracked
down during compilation process, are known as "Syntax Errors".

9-15

1. Syntax Error

TRILOGI employs a sophisticated yet extremely user-friendly syntax error
fracking system: When a syntax error is encountered, the compilatfion
will be aborted immediately and the CusFn, which contains the error, is
automatically opened in the text editor. The location of the offending
word is also highlighted and a pop-up message window reports to you
the cause of the error. You can then immediately fix the error and re-
compile until all the errors have been corrected.

Error Message

Undefined symbol found

Compiler internal error

") " found without
matching " ("

Integer expected

Value is out-of-range
Duplicate line label
number

Undefined GOTO
destination:

Invalid GOTO label

Type mismatch (numeric
and string types may not
Mix)

String is too long

Too many line labels

Unknown Keyword

WHILE without ENDWHILE

IF without ENDIF

Cause / Action

Only TBASIC commands and legal variable
names are allowed. See Chapter 3.

Serious frouble, please email to the
manufacturer support@tri-plc.com to inform
us.

Expect to see either an integer variable or
infeger constant.

Check the language reference for allowable
range of values for the command.

Label for GOTO must be unique within the
same CusFn.

Put a matching label at the place where the
GOTO statement is supposed to go.

@# must be in the range 0-255

In an expression, strings and integers may not
be mixed unless converted using the
conversion function. e.g. STRS, VAL, etc.

A string is limited to 70 characters

There should not be more than 20 GOTO
labels within the same CusFn.

Most likely wrong spelling for TBASIC statement
or function.

Every WHILE statement must be ended with a
matching ENDWHILE statement. Nested WHILE
loop must have proper matching ENDWHILE for
each WHILE.

Every IF statement must be ended with a
matching ENDIF statement to define the
boundaries for the block controlled by the IF
statement. For multiole IF THEN statement,

9-16

FOR without NEXT

Expect keyword "TO"
Must be an integer

Must be an integer
variable only

Must be an integer
constant only

Must be a string

Must be a string variable
only

Must be a string constant
only

Incomplete Expression

String constant missing
closing "

Must be Integer A to Z only

each IF must be matched by a corresponding
ENDIF.

Every FOR statement must be ended with a
matching NEXT statement to define the
boundaries for the block controlled by the FOR
statement. For nested FOR loops, each FOR
must be matched by a corresponding NEXT.

Required by FOR statement.
String variable or constant not allowed.

Integer constant not allowed.

Integer variable not allowed.
Integer constant or variable not allowed.

String constant not allowed.

String variable not allowed.

Expression not ended properly.

String constants must be enclosed between a
pair of opening and closing quotation
character ()

index for FOR..NEXT loop must be A-Z.

2. Run-Time Errors

Certain errors only become apparent during the execution of the
program, e.g. A = B/C. This expression is perfectly OK except when C =
0, then you would have attempted to divide a number by zero, which
does not yield any meaningful result. In this case a "run-time error" is
said to have occurred. Since run-time errors cannot be identified during
compilation, TRILOGI also checks the validity of a command during
simulafion run and if a run-time eror is encountered, a pPop-up
message window will report to the programmer the cause and the
CusFn where the run-time error took place. This helps the programmer
locate the cause of the run-fime errors to enable debugging. The
possible run-time errors are listed in the following table and they are
generally self-explanatory.

Run-Time Error Message

Divide by zero

Call stack overflow! Circular CALL suspected!
FOR-NEXT loop with STEP = Q!
SET_BIT position out-of-range!
CLR_BIT position out-of-range!

TEST BIT position out-of-range!
STEPSPEED channel out-of-range!
llegal Pulse Rate for STEPMOVE!
llegal acceleration for STEPMOVE!
STEPMOVE channel out-of-range!
STEPSTOP channel out-of-rangel!
ADC channel out-of-range

DAC channel out-of-range

LED Digit # within (1-12) Only!

PWM Channel out-of-range!

LCD Line # must be (1-4) Only!

PM channel out-of-range!

System Variable Index Out-of-range!
Shifting of (A-Z) Out-of-range!

llegal Opcode - Please Inform Manufacturer!
Timer or Counter # Out-of-Range!

9-18

Chapter 10: TBASIC Statements, Functions,
Operators and Variables

What are TBASIC Statement and Functions?

1. STATEMENT

A STATEMENT is a group of keywords used by TBASIC to perform certain
action. A statement may take 0,1,2 or more arguments. The following
are some TBASIC statements: PRINT, LET, IF, WHILE, SETLED ...efc.

. FUNCTION

A FUNCTION acts on its supplied arguments and return a value. The
returned value may e an integer or a string. A function can usually be
embedded within an expression as if it is a variable or a constant, since
its content will be evaluated before being used in the expression. E.Q.

AS = 'Total is $"+STR$(B+C)

STRS(n) is a function which returns a sting and therefore can be used
directly in the above string assignment statement.

The most distinguishable feature of a FUNCTION is that its arguments are
enclosed within parenthesis "(* and ")". e.g. ABS(n), ADC(n), MIDS(AS,n.m),
STRCMP(AS,BS).

Note: Statements or functions and their arguments are NOT case-
sensitive. This means that commands such as PRINT and PriNt are
identical. However, for clarity seeks we use a mix of upper and lower
case characters in this manual.

. DELIMITER

A TBASIC program consists of many statements. Each statement usually
falls on a different line. The new line therefore acts as a "delimiter" which
separates one statement frorm another. Some statements such as
IF..THEN..ELSE..ENDIF span multiple statements and should be separated
by proper delimiters.

To make a program visually more compact, the colon symbol ":"
may be used to act as delimiter. E.Q.

10-1

IF A > BTHEN

C =D*5
ELSE

C =D/5
ENDIF

may be written more compactly as
IF A >B:C=D*5ELSE:C=D/5:ENDIF

TBASIC Integer Constants, Variables & Operators

The TBASIC compiler in TRILOGI Version 6 supports full 32-bit integer
computations. However, only variable A to Z are 32 bits in length which
allow them to represent number between -23' to -2%', the remaining
system variables and data memory DM[n] are all 16-bit variables which
means that they can only store numiber between -32768 to +32767.
However, all numerical computations and comparisons in TBASIC are
caried out in 32-bit signed integer, regardless of the bit-length of the
variables involved in the numerical expression.

1. Integer Constants

These may be entered directly in decimal form, or in hexadecimal
form by prefixing the number with the symbol "&H". e.Q.

12345678
&H3EF =1007 (decimal)

If the result of an expression is outside the 32-bit limits, it will overflow
and change sign. Care must therefore be exercised to prevent
unexpected result from an intfeger-overflow condition.

A constant may be used in an assignment statement or in an
expression as follow:

A = 12345

IF A*30 + 2345/123 > 100
THENENDIF

10-2

IMPORTANT (16-bit variables comparison)

When entering an integer constant using the hexadecimal prefix
"&H", it is important to note the sign of the infended value and
extend the signs to most significant bit of the 32 bit expression.
E.g. fo represent a decimal number "-1234", the hexadecimal
representation must be "&HFFFFFB2E" and not "&HFB2E".

Assuming that a 16-bit variable DM[1] contains the number -1234
and a comparison statement is made to check if the numiber is -
1234. The 32-bit hexadecimal representation of constant -1234 is
&HFFFFFB2E. If you enter the constant as 16-bit representation
"&HFB2E" as follow:

IF DM[1] <> &HFB2E CALL 5

TBASIC translates the numiber "&HFB2E" into a 32-bit decimal
number 64302, which when compared to the number "-1234"
contained in DM[1] will yield a "False" result which is an error. The
following are the correct representation:

a) IF DM[1] <> -1234 CALL 5 : ENDIF
b) IF DM[1] <> &HFFFFFB2E"™ CALL 5: ENDIF

2. Integer Variables

Variables are memory locations used for storing data for later use. All
Integer variables used in TBASIC are GLOBAL variables - this means that
all these variables are shared and accessible fromm every custom
function.

NEW! With Trilogi version 6.2 and above, you can now attach
comments to any variable name of any length to make
program easier to read. See section 5 (Integer Variable
Comments) below for more details. Specific examples with each
variable type are shown below.

TBASIC supports the following integer variables:

i. 26 Integer variables A, B, C....Z which are 32-bit variables. Note
that the variable name is a single character by default;
however, as mentioned above, you can append a comment

10-3

to the variable. EG: A_temperature, A distance - both refer to
the same variable A

i. A large, one-dimensional 16-bit integer array from DM[1] to
DM[4000], where DM stands for Data Memory. A DM s
addressed by its index enclosed between the two square
brackets "[" and "". e.g. DM[3], DM[A+B*5], where A and B are
integer variables. A comment can also be appended to DM[]
variables as follows: DM[1] Current_status of _product] - refers
to variable DM[1].

ii. ~ System variables. These are special integer variables that relate
to the PLC hardware, as follows:

NOTE: All of the following System Variables can have comments
appended to them with the same format as described in section
5 (Integer Variable Comments).

Inputs, Outputs, Relays, Timers and Counters Contacts

The bit addressable 1/Os elements are organized into 16-bit integer
variables INPUT[n], OUTPUT[N], RELAY[n], TIMERBIT[n] and CTRBIT[n] so that
they may be easily accessed from within a CusFn. These 1/Os are
arranged as shown in the following diagram:

I/O numbers
33 32 17 16
e \HHHHHHH\HHH\HHHHHHHHHHHHHH
Bit #
INPUT[3] INPUT[2] INPUT[1]
OUTPUTI3] OUTPUTI[2] OUTPUTI[1]
--------- RELAYI[3] RELAY[2] RELAY[1]
TIMERBITI[3] TIMERBIT[2] TIMERBIT[1]
CTRBIT[3] CTRBIT[2] CTRBIT[1]

Timers and Counters Present Values

The present values (PV) of the 128 timers and 256 counters in the PLC
can be accessed directly as system variables:

timerPV[1] to timerPV[128], for timers' present value
CtrPV[1] to ctrPV[256], for counters' present value

10-4

DATE and TIME Variables

The PLC's Real-Time-Clock (RTC) derived date and time can be
accessed via variables DATE[1] to DATE[4] and TIME[1] to TIME[3].
respectively as shown in the following table:

Date Time
YEAR DATE[1] HOUR TIME[1]
MONTH DATE[2] MINUTES TIME[2]
DAY DATE[3] SECOND TIME[3]
Day of
Week DATE[4]

DATE[1] : may contain four
digits (e.g. 1998, 2003 etc).
DATE[4] : 1 for Monday, 2 for
Tuesday, 7 for Sunday.

High Speed Counters

The M-series and F-series PLCs support High Speed Counters (HSC) that
can be used to capture high frequency incoming pulses from
positional feedback encoder. These high speed counters are
accessible by CuskFn using the variables HSCPV[1] to HSCPV[8]. All
HSCPV[n] are 32-bit integer variables. Note that TRILOGI does not
simulate high-speed counter operations.

. Integer operators:

"Operators" perform mathematical or logical operations on data.
TBASIC supports the following integer operators:

i) Assignment Operator:

An integer variable (A to Z, DM and system variables, etc) may be
assigned a value using the assignment statement:

A = 1000
X = H*I+J + len(AS)

i) Arithmetic Operators:

Symbol |Operation Example
+ Addition A =B+C+25
- Subtraction Z = TIME[3]-10

10-5

* Multiplication | PRINT #1 X*Y
/ Division X = A/(100+B)
MOD Modulus Y =YMOD 10

iii) Bitwise Logical Operators: logical operations is perform bit-for-
bit between two 16-bit integer data.

Symbol Operation Example
& logical AND IF input[1] & &HO2 ...
| logical OR output[1] = A | &HO8
~ Exclusive OR A = RELAY[2] ~ B
~ logical NOT A = ~tfimerPV[1]

iv) Relatfional Operators : Used exclusively for decision making
expression in statement such as IF expression THEN and
WHILE expression ...

Symbol | Operation Example
= Equal To IFA =100

<> Not Equal To WHILE CTR _PV[0]<> O
Greater Than IF B > C/(D+10)
Less Than IF TIME[3] < 59

.- TGoreo’rer Than or Equall WHILE X >= 10

<= Less Than or Equal To |IF DM[l] <= 5678

AND Relational AND IF A>BAND C<=D

OR Relational OR IF A<>0 OR B=1000

v) Functional Operators : TBASIC supports a number of built in functions
which operate on integer parameters as shown below:

ABS(n), ADC(n), CHR$(n), HEX$(n), STRS$(n)

. Hierarchy of Operators

The hierarchy of operators represents the priority of computation. E.Q. X
= 3 + 40*(5 - 2). The compiler will generate codes to compute 5 - 2
first because the parentheses have the higher hierarchy. The result is
then multiplied by 40 because multiplication has a higher priority then

10-6

addition. Finally 3 will be added to the result. If two operators are of the
same hierarchy, then compiler will evaluate from left to right. e.g. X = 5
+ 4 - 3. 5+4 is first computed and then 3 will be subtracted. The
following table list the hierarchy of various operator used.

Hierarchy Symbol Descriptions
Highest () Parentheses

*, |, MOD Multiplication/Division

+, - Add/Subtract

- Negate

& |, ™~ Logical AND,OR,XOR,NOT
Lowest |=,<>,>,>=,<,<= Relational operators

5. Integer Variable Comments (NEW!)

With Trilogi version 6.2 and above, you can now attach comments to
any variable/reqgister name of any length to make program easier 1o
read. The compiler will ignore any alphanumeric characters (A to z, O
to 9 and ' ') that are attached behind the variable name following an
underscore character * “. It is important fo understand that by
appending these comments to variables, no new variables are being
created.

For Example: "X _Some _Integer" corresponds to "X"

An integer variable (such as DM[1]) can have different comments each
time it is referenced in the same program because the compiler
ignores the comments anyways. Although, in most cases it may be
pest to limit a variable to one comment to avoid potentially overwriting
data since no new variables are actually create, as mentioned above.

For Example: If an integer variable, DM[1], was named

'DM[1] one integer" in one part of a program and named
"DM[1]_two_integer" in another part of the program, then they will sill
both refer to DM[1]. If each variation has different integer data, then
the data that was stored in the last variation that was updated will be
the data in DM[1]. Then if the previous variation is accessed, it wont
contain the data that was originally stored in it.

10-7

lll. String Variables and Constant

A string is a sequence of alphanumeric characters (8-bit ASCIl codes)
which collectively form an entity.

1. String Constants

A string constant may contain from 0 to 70 characters enclosed in
double quotation marks. e.g.

"TBASIC made PLC numeric processing a piece of cake!"
"$102,345.00"

From TRILOGI Version 6.1 onwards, you can also represent a non-
printable character or ASCIl character which is > 127 in a string
constant, What you do is to enter the character as an “escape
sequence” which is in the format of “XX". The backslash character ™\
denotes that this is an escape sequence, and XX is the hexadecimal
value of the character. E.g. character A can be written as "\41” and
character Z can be written as "\5A".

For example, a string written as “\BF\D8\D6\CH\C6\F7” actually contains
only 6 ASCII characters that are all above 127. (These are the GB codes
that represent the 3 Chinese characters “{ZHlEs).

2. String Variables

TBASIC supports a maximum of 26 string variables AS, BS ... ZS. Each
string variable may contain from O (null string) up to a maximum of 70
characters.

Note: For M-series PLC with firmware version r45 and above and all F-
series PLCs, you can access the 26 string variables using an
index: $S[1] to $$[26]. l.e. AS is the same as $§[1], Z$S is the
same as $S8[26]. Note that $S[1] to $§[26] are not additional
string variables, it just give you a way to index the string variables
not possible on previous firmware version. Also, only TRILOGI
version 5.2 and above properly support these variable names.
Caution: Do not try to transfer a program using $$[n] variable to
a PLC with firmware earlier than r45 as it can cause the PLC
operating system to crash.

A String variable must NOT contain any of the following characters:
ASCII 0, 10 and 13 (decimal). If a String variable contains one of these
characters it could cause the online monitoring of the string variable o
fail since O is used as string terminator and ASCIlI 10 and 13 are LF and

10-8

CR character respectively, which are characters used for terminating
communication command and response strings. If you include one of
these characters in a sfting variable they could cause the
command/response string to terminate prematurely and the program
will complain that the PLC is not responding correctly.

NEW! With Trilogi version 6.2 and above, you can now attach
comments to any variable name of any length to make program
easier to read. See section 4 (String Variable Comments) below for
more details.

3. String Operators

)

i)

Assignment Operator: A string variable (A to Z, DM and system
variables, etc) may be assigned a string expression using the
assignment statement:

AS = "Hello, Welcome To TBASIC"
Z$ = MIDS(AS,3,5)

Concatenation Operators: Two or more sftrings can be
concatenated (joined together) simply by using the "+" operator.

e.qg.

MS = "Hello" + AS + ", welcome to " + BS

If AS contains "James", and BS contains "TBASIC", M$ will contain the
string: "Hello James, welcome to TBASIC.

Comparison Operator: Two strings may be compared for equality by
using the function STRCMP(A$,BS). However, the integer comparator
such as "=", "< >", efc cannoft be used for string comparison.

Functional Operators: TBASIC supports a number of statement and
functions which take one or more string arguments and return either
an integer or a string value. e.qQ.

LEN(x$), MIDS(AS,x.y). PRINT #1 AS,....
SETLCD 1, X$VAL(x$)

Please refer to the next chapter for detailed descriptions of these
operators.

4. String Variable Comments (NEW!)

With TRILOGI version 6.2 and above, you can now attach comments to
any variable name of any length to make program easier to read. The
compiler will ignore any alphanumeric characters (A to z, 0o 9 and *)

10-9

that are affached behind the variable name following an underscore
character * “. It is important to understand that by appending these
comments to variables, no new variables are being creatfed.

For Example: "AS_Some _String" corresponds to "AS" (or $S[1]).

A string variable (such as AS) can have different commments each time it is
referenced in the same program because the compiler ignores the
comments anyways. Although, in most cases it may be best to limit a
variable to one comment to avoid potentially overwriting data since no
new variables are actually create, as mentioned above.

For Example: If a sting variable, AS, was named "A$_one _string" in one
part of a program and named "A$ two sting" in another part of the
program, then they will still both refer to AS. If each variation has different
string dafa, then the data that was stored in the last variation that was
updated will be the data in AS. Then if the previous variation is accessed,
it wont contain the datfa that was originally stored in it.

Special Variables — EMINT, EMLINT & EMEVENT

The TI0OMD+ and T100MX+ PLCs are originally designed to be used with
a third-pany server software named “"EMIT 3.0, made by emWare Inc. of
Salt Lake City, USA. However, we have decided to depart from the EMIT
platform for all future PLC design and we no longer support the later
version of EMIT server.

Anyway, there are some special variables set aside for data exchange
with the EMIT and these may now be freely used as additional memory in
your TBASIC program:

a) emInt[1] to emInt[16]: These are 16 bit unsigned integer
variables.

b) emEvent[1l] to emEVENT[16]: These are 16 bit unsigned integer
variables. EmMEVENT[1] is also used for email purpose.

Cc) emLInt[1] to emLInt[16]: These are 32-bit unsigned integer
variables.

Note that since EMLINT[1] to EMLINT[16] form an integer array, these 32-bit
integer variables can be easily addressed by an index such as EMLINT[N]
which is not possible with the 32-bit integer variables A to Z.

10-10

Chapter 11: TBASIC Keyword Reference

ABS(x)

Purpose To return the absolute value of the numeric expression x

Examples A = ABS(2*16-100)

Comments : A should confain the value 68.

ADC(n)

Purpose To retun the value from the Analog-To-Digital Converter channel
#n. nshould be between 1 and 16.

Examples A = ADC(2)

Comments n may be a numeric expression which returns a value between 1 and

16. If it is out-of-range, a run-time error will be reported and the function
will be aborted.
TRILOGI software is able to support up to 16 channels of 16-bit bipolar
ADC (which may has a range between -32768 and 32767. The actual
number of ADC channels and the resolution will depend on the target
PLC. On the T100MD+ and T100MX+, there are 8 or less ADCs and all
the A/D are normalized to 12-bit with a range of between 0 and 4096.

ASC(x$, n)

Purpose To return the numeric value that is the ASCIlI code for the nth
character of the string x$. If x$ is a null string, ASC(x$,n) retumns value
0. n may start from 1 up to the length of the string.

Examples B = ASC("'Test String",6)

Comments B should contain the value 83 (which is ASCIl value of 'S'). If n is less than
1 or greater than string length, ASC(x$, n) returns a 0.

See Also CHR$(n)

CALL n

Purpose To call another Custom Function CuskFn #n as subroutine. When the
called function returns, execution will continue from the following
statement. n must be either an infeger constant between 1 and
256, or the label name of the Custom Function defined in the
Custom Function table.

Examples IF B >5 THEN CALL 8 : ENDIF

CALL Addition "Addition” must be a defined name.

See Also RETURN

CHR$(n)

Purpose : To convert a number n into its corresponding ASCII character. n
must be a numeric constant (0 to 255)
Examples C$ = "This is Message #" + CHR$(&H35)

Comments : CS should contain: "This is Message #5", since CHRS(&H35) returns the
character '6'. In TL6 you can also use "Escape” sequence fo represent
non-printable ASCIl characterr E.Q. "/0D” to represent CR character.

See Also . ASC()

CLRBIT v, n

Purpose . To clear the Bit #n of the integer variable v to '0". n is an integer
constant or variable of value between 0 and 15. v may be any
integer variable or a system variable such as relay[n], output[n],
efc. If vis a 32-bit integer, CLRBIT will only operate on the lowerlé
bits.

Following digital electronics convention, bit O refers to the least
significant bit (right most bit) and bit 15 the most significant bit (left
most bit) of the 16-bit infeger variable.

Examples CLRBIT output[2],11

Comments . Physical oufput #28 will be turned OFF.
(Output channel #2 bit #11 = Qutput #17 +11 = 28)

See Also . SETBIT, TESTBIT, SETIO, CLRIO,TOGGLEIO & TESTIO

CLRIO labelname
SETIO labelname
TOGGLEIO labelname
TESTIO (labelname)

Purpose @ Manipulate the logic states of any input, output, relay, timer or
counter contact bit within a CusFn. The labelname refers 1o the label
names defined in the input, output, relay, timer or counter tables.

SETIO set a bit to ON, CLRIO clear the bit to OFF, and TOGGLEIO
flip the current logic state of that I/O bit. TESTIO function returns a
1 if the bit is ON and a O if the bit is OFF.

E.Q. SETBIT alarm
IF TESTBIT(alarm) THEN .. ELSE ..ENDIF

Comments This function offers a more efficient way of manipulating the /O bits
compared to the SETBIT and CLRBIT function. However, SETBIT and CLRBIT

functions have the advantage that they can use variables fo indicate the
index and bit position of the bif to be affected, whereas the /O bif that
affected by the commands here are fixed during compile time. Note that
outfput bit changed in custom function will only be updated at the
physical oufput at the end of the ladder logic scan unless a “REFRESH”
command is being executed.

See Also : SETBIT, CLRBIT
* CRC16 (var, count) {* Applicable only to PLC with firmware r44 or higher}

Purpose This function returns the computed CRC16 for a range of integers
starfing from variable “var” with the range indicated in the
parameter “count”. CRC16 is a 16-bit version of “Cyclic
Redundancy Check” — a popular mathematical formula for
checking error in a data stream.

Examples DM[100] = CRC16(DM[5].,8)

X = CRC16(RELAY[2],4)

Comments : CRC16 for DM[5], DM[6].....DM[12] will be assigned to DM[100]
CRC16 for RELAY[2], RELAY[3], RELAY[4], RELAY[5] will be assigned to X.

DELAY n

Purpose To provide a time delay of n millisecond to the process.

Example DELAY 100

Comments . Provide a 100 ms (0.1s) delay fo the current custom function.

It is important 1o note that this is a “orute force” delay method and only 1o
be used with caution. When a DELAY function is executed the CPU waits atf
the statement until the period specified by the “delay” is over. This means
that all the remaining ladder programs and other custom functions will stop
responding to changing input conditions, only system services (serial input,
countdown timers and host link commands etc) as well as interrupt driven
CusFns will work during the period of delay. This may not be desirable if the
rest of the process must respond to fast changing inputs. For delays longer
than 0.1s a much better way is to invoke the regular PLC timer and use the
timer contact to trigger another custom function at the end of the delay.

For the TIOOMD+ and T100MX+, the minimum delay provided by this
function is 10ms, and the resolution of the time delay is T0ms. This means if
you execute DELAY 155 the actual delay will be rounded to 160ms, and
for DELAY 154 the actual time delay will be 150mes.

FOR ... NEXT

Purpose

Syntax

Examples

Comments

See Also

To execute a series of instructions for a specified number of times
in a loop.

FOR variable = x TO y [STEP z]

NEXT

where variable may be any integer variable A to Z only and is
used as a counter. x, y and z are numeric expressions. STEP z is an
optional part of the statement.

x is the initial value of the counter, y is the final value of the counter.

Program lines following the FOR statement are executed unfil the
NEXT statement is encountered. Then the counter is incremented
by the amount specified by STEP. If STEP is not specified, the
increment is assumed to be 1.

A check is performed to see if the value of the counter is greater
than the final value y if STEP is positive (or smaller than the vy if
STEP is negative). If it is not greater, the program branches back to
the statement after the FOR statement, and the process is
repeated. If it is greater, execution continues with the statement
following the NEXT stafement. This is called a FOR-NEXT loop.

A run-time error will result if STEP is evaluated to be O.

FOR 1=1 TO 10
FOR J = 100 to 1 STEP -10
DM[1] = DM[J]
NEXT
NEXT

FOR-NEXT loops may be nested; i.e. a FOR-NEXT loop may be placed
within the confext of another FOR-NEXT loop. When loops are nesfed,
each loop must have a unique variable name as its counter. The NEXT
statement for the inside loop must appear before that for the outside
loop. Each Loop must have a separafte NEXT statement to mark the end
of the loop.

WHILE ... ENDWHILE

GetCtrSV (n)

GetTimerSV (n)

Purpose

Return the Set Value (S.V,) of the Counter #n or Timer #n.
n should be between 1 and the maximum number of timers and
counters in your PLC.

Note

See Also

. Although the present values (P.V.) of timers and counters #n can

e accessed directly as variables “TimerPV[n]” & “CtPV[n]”", the Set
Values however can only be obtained by these two functions.

SetCtrSV, SetTimerSV

GETHIGH16(v)

Purpose This function returns the upper 16-bit of a 32-bit infeger variable v.
This can be used to break the value of a 32-bit integer data or
variable into two 16-bit values so that they can e saved to the
EEPROM or to the DM[N].

Examples DM[1] = GetHIGH16(A)

save EEP GetHIGH16(&H12345678), 10

See Also SETHIGH16

GOTO @n

Purpose To branch unconditionally out of the normal program sequence to
a specified line with label @n within the present Custom Function.
The destination line must have a corresponding line label marked
as "@n", where n must be a constant within 0-255. Note that the
label is local only to the present CusFn. i.e. another CusFn may
have a label with the same n but the GOTO @n will only branch to
the line label within the same CusFn.

Examples @156 SETBIT 0,3

GOTO @156

Comments : An error message will appear during compilation if the destination label
is undefined.

HEX$(n)

HEX$ (n, d)

Purpose To return a string that represents the hexadecimal value of the
numeric argument n. If the second format is used then this function
will return a string of ‘d” number of characters.

Examples A$ = HEX$(1234)

B$ = HEX$(1234,7)
Comments : AS will confain the string : "4D2", BS will contain the string "00004D2",
See Also HEXVAL(), STR$(), VAL()

HEXVAL(x$)

Purpose

Examples
Comments :

See Also

To return the value of a hexadecimal number contained in the
argument xS.

B = HEXVAL("'123")*100
B should contain the value 29100 (&H123 =291)
HEX$(), STR$(), VAL()

HSCDEF ch, fn_num, value

Purpose

Important

Example

Comments

Enable and set up parameters for the High Speed Counters
channel ch. These counters operate independently of the ladder
logic scan fime and can capfure high speed input pulses
generatfed by position encoders.

ch = channel number (1-8)

fn_num = Custom Function # 1o frigger when value is
reached.

value = trigger when HSC reach this (32-bit) infeger value.

If the PLC supports quadrature encoder inputs, then the HSC
counter variable HSCPV[ch] will increment/decrement according to
direction of rotation. When value is reached, the specified custom
function activates immediately.

. All High Speed Counters are disabled automatically when the PLC

is reset unless they are enabled by the HSCDEF statement.
However, if more than one HSCDEF for the same channel ch is
executed, only the last executed HSCDEF statement will take
effect. Hence you should put the next HSCDEF statement within the
Cuskn triggered by the first HSCDEF. By chaining the HSCDEF
statement from one CusFn to another, you can control the motion
of the machine using the HSC value to execute a series of CusFn
one by one. Within these CusFn you can program what to do to
control the motion. E.g. changing the speed, putting on the brake,
change direction of motion, etc. You can use the SETIO, CLRIO for
digital ON/OFF control and setDAC, setPWM for proportional
control.

HSCPV[1] = O
HSCDEF 1,19,-3310003

SETLCD 1,1,STR$(HSCPV[1],6)

Enable High-Speed Counter #1 and make it activate function #19
when the counter reaches -33,100,003. Present value of HSC#1 was
cleared tfo 0 before activating it. Note that TRILOGI Version 5.x does not

11-6

perform simulation of the High Speed counter operation since there is
no High Speed Counter inputs on the simulator screen.

See Also HSCOFF

HSCOFF ch

Purpose Disable High Speed Counter #ch (ch = 1 to 8)
If you no longer need the high speed counter, it should be
disabled in order not to waste the CPU’s time to service the interrupt
generated by the change of state af the HSC input..

HSTIMER n

Purpose To define PLC Timer #1 to #n as “"High Speed Timers” (HST). A HST

counts down every 0.01s instead of every 0.1s for normal timer,
and their other properties are identical to normal timer. Those
Timers whose number are above n are not affected and remain
ordinary timers.

IF .. THEN .. ELSE .. ENDIF

Purpose

Syntax

To make a decision regarding program flow based on the result
returned by an expression.

IF expression [THEN]

If the result of the expression is non-zero (logical true), the block of
program lines between the THEN and the ELSE statements will
be executed. If the result of the expression is zero (false), the block
pbetween the IF and ELSE will be ignored, and the block between
the ELSE and ENDIF statfements will be executed instead.

If there is no ELSE statement, and if the result of the expression is
false, the block of program lines between the THEN and the ENDIF
statement will be ignored, but execution will continue right after the
ENDIF statement.

Nesting of IF statement

Statement blocks within the [IF..THEN..ELSE statement may contain other
IF..THEN..ELSE blocks (nesting). Note that each IF statement must be ended with
the ENDIF statement. Otherwise an eror message "IF without ENDIF" will be
reported during compilation.

Testing Equality: Special comparison operators may e used in the expression of
the IF statement. Only infeger expression may be compared. For comparison of
strings, please refer to the "STRCMP(AS, BS)" function.

Equal =
Not Equal <>
Greater than >
Less than <
Greater than or EqQual to >=
Less than or Equal to <=
Examples IF A >= B*5-20*C OR C=20
B = B-1
ELSE
B = B*3
ENDIF
Comments : A few comparison expressions may be linked with logical-AND (AND
statement) or logical-OR (OR statement) operator as shown in the
above examples.
INCOMM(ch)
Purpose To retun a single 8-bit binary data obtained from Comm. channel
ch,
ch must be a numeric constant between 1 and 8. The actual
target hardware determines the valid port #. This function returns -1
if there is no data waiting at serial port.
Example FOR I1=1 to 100
DM[I] = INCOMM(2):
IF DM[1]<0 RETURN :ENDIF
NEXT
Comments Usually the PLC buffers the serial data arriving at its COMM port so that
the program does not need to confinuously check the COMM port for
data. When the program is ready to process the data it can use the
FOR..NEXT loop shown in the above example to read in all the data in
the COMM buffer until it encounters a -1, which indicates that the buffer
is empty.
Note: INCOMM is now supported on all COMM ports of TIOOMD1616+ and
T100MX+ families of PLCs.
See Also : OUTCOMM, INPUTS$(), PRINT #

INPUTS$(ch)

Purpose . To return a string obtained from communication port # ch.
ch must be a numeric constant between 1 and 8. The actual
target hardware determines the valid port #. This function returns
an empty string if there is no valid string waiting at serial port in
order not to hold up the CPU.

Example For 1=1 to 1000 “loop 1000 times
A$ = INPUT$(1) “ Read from COMM1
IF LEN(A$)<> 0 “ String is not empty.
RETURN “ A$ contains data.
ENDIF
NEXT
SETLCD 1,1, “Nothing received”

Comments : A Carriage Return (CR) or ASCIl code 13 marks the end of a valid input
string from the communication port. The returned sfring however will
exclude the CR character. In TRILOGI simulator, the user will be
prompted fo enter the string in @ pPop-up window.

See Also : INCOMM(), PRINT #, OUTCOMM

INTRDEF ch, fn_num, edge

Purpose . Enable Interrupt Input channel #ch.
ch = channel number (1-8)
fn_num = Custom Function number to execute when interrupt pin
changes according to the defined edge. This is the
Interrupt Service Routine ISR.
edge = Positive number means rising edge-triggered.
0 or negative number means falling-edge friggered.

See Also . INTROFF

INTROFF ch

Purpose: Disable Interrupt Input channel # ch.

See Also : INTRDEF

LEN (x$)

Purpose . To return the number of characters in x$.

Examples L = LEN('This is a test string"+CHR$(13))

Comments : L = 22 because blanks and non-printing characters are counted.

LET

Purpose . To assign the value of an expression to a variable
Syntax ; [LET] variable = expression
Examples LET D = 11

A$ = "Welcome to TBASIC"

Comments : LET statement is optional: i.e. the equal sign is sufficient when assigning
an expression to a variable name. The variable type on both sides of the
equal side must be the same. i.e. string variable may not be assigned
fo @ numeric expression and vice-versQ.

Important : a) When assigning a 16-bit variable to a 32-bit integer, only the
lower 16 bits of the 32-bit intfeger will be assigned. Hence the
programmer must take special care if the 32-bit number is out
of the range of a 16-bit number (which is between -32768 to
32767).

b) If a negative 16-bit number is assigned to 32-bit integer
variable, then the sign bit will be extended to 32 bits.
e.g. DM[1] = -123.
A = DM[1]
The 16-bit hexadecimal value of -123 is &HFF85, but A will be
assigned the hexadecimal value &HFFFFFF85. Their decimal
representation are however the same.

LOAD_EEP(addr)

Purpose . To retun a 16-bit integer value saved in the EEPROM by the
SAVE_EEP statement.

addr - EEPROM address in TRILOGI version 5.x. Actual PLC may
have less EEPROM space. Please refer to your PLC's
reference manual for the upper limit.

Examples relay[1] = LOAD_EEP(10): A = LOAD_EEP(2)
See Also . SAVE_EEP

* LOAD_EEP$ (addr) {* Applicable only to PLC with firmware r44 or higher}
Purpose . This function returns a string previously saved into the PLC's internal
data EEPROM using the “SAVE_EEPS command.
Examples X$ = Load EEP$(5)
FOR 1 =1 to 5
$$[1] = Load_EEP$(1+10)
NEXT

Comments : 1. String saved in EEPROM string location #5 is loaded into XS

11-10

See Also

2. Strings saved in EEPROM string locations #11 to #15 are loaded
info AS 1o ES ($S[1] to SS[5] represents AS to ES)

SAVE_EEPR$ for explanation of how the data EEPROM area are
organized in the M-series PLC's to provide storage area for both
integers and stfrings.

LSHIFT i, n

Purpose

Examples

Comments :

See Also

To shift 1 bit o the left the integer variable i which must be either
an infeger variable, a DM[n] or a system variable such as relay[n],
output[n], etfc.

LSHIFT instruction permits more than one variable to be chained
together before performing a bit shift. The parameter n indicates
the numiber of channels to be chained starting from i upward. n
=1 if only one variable is involved.

LSHIFT relay[2],3
The relay channels #2,#3, and #4 (which represent relays number #17
fo #64) are chained fogether in the following manner:
LSHIFT

Relay[4] Relay[3] Relay[2]

Bits are shiffed from the lower channel towards the upper
channel. Bit #15 of Relay[2] will be shiffed into Bit #0 of Relay[3]
and so on. Bit #15 of the highest channel Relay[4] will be [ost.

RSHIFT

MID$(x$, n, m)

Purpose

Examples
Comments

This function returns a sub-string of m characters from x$, beginning

with the nth character.

x$ - any string expression, variable or constant.

n - any numeric expression producing a result of between 1 to
255

m - any numeric expression producing a result of between 0 to
255.

A$ = MID$(""Welcome to TBASIC",4,7)

. AS should contain the string :"come to".

11-11

NETCMDS$ (ch, x$)

Purpose

Note:

Examples

Comments

Special

This function sends a multi-point host link command string specified
in the x$ via serial port #ch to another M-series or H-series PLC. It will
then wait for a specified amount of time for a response string from
the other PLC and this response string is then returned.

ch - This refer 1o the communication port #. Please refer to the target
PLC for details.

x$ - contains a valid host link command in multi-point format, excluding
the Frame Check Sequence (FCS) and the terminator characters (*
and CR). NETCMDS function will automatically compute the FCS
and append to the end of x$ and together with the terminator
characters will be sent to the other PLC via COMM #ch.

If the target PLC does not respond then this function retumns an
empty string.

This function checks the FCS of the response string, and if the FCS
is wrong it indicates an error in the serial reception and it will return
an empty string.

A$ = NETCMD$(3, "@05R100™)

To read the Input channel #0 of the PLC with ID = 05 connected fo
COMM #3 of this PLC. The response string will be assigned to AS.

If the last character of x$ is a "~" character, NETCMDS will send out the
string without the '~ character. [t will not append the FCS and *' to the
oufgoing string and it will not send out the carriage return (ASCIl 13)
character. It will also NOT check the response string for FCS. This allow
NETCMDS to be used to interface to third-party ASCIl devices with
different command/response formats.

E.g. A3 = NETCMD$(3, “Hello World~"")

The string “Hello World” will be sent out of serial COMM port #3. AS will
receive the full retfurned string without applying any FCS check on the
return string.

OUTCOMM n, X

Purpose

Examples

This statement can be used to send an 8-bit byte of data ' x ' via
Comm port #n. This command is added because PRINT#n
command cannot be used to send out CHRS(0). Zero is treated as
the end of a string in TBASIC and will be ignored if you use PRINT #n
statement to send out CHRS(0).

OUTCOMM 2,225

11-12

PAUSE
Purpose:

To set a breakpoint for executing the Cuskn. This is used mainly for
debugging a CusFn. By Inserting a PAUSE statement at the place of
interest, you can suspend the program execution when PAUSE is
encountered, after which you may examine the values of the
relevant variables. You can continue to perform on-line monitoring of
the PLC that has been paused. Program execution can also be
continued by pressing the <P> key during Simulation or On-line
Monitoring.

PIDcompute(ch, E)

Purpose:

Example :

This function computes the output for the PID compensator/ controller,
using the P,I, and D Gains defined in the PIDdef statement for the
same channel ch. The integral and differential values are stored within
the channel's infernal data space and will be automatically used by
the PID computation routine. The PIDcompute() function uses the Imt
(max. limit) term of PIDdef statement to limit the results of its
computation. If the absolute value of the computed result is greater
then "Imt", then the result will be set equal to "Imt" for +ve numiber and
to "-Imt" for negative value. When this happens, the integral term will
not accumulate the current error to prevent an ‘integrator windup"
which is very undesirable for the system.

ch = channel number (1-16)
Err = Closed-loop Error.
(i.,e. Set point value - Feedback Value)

The controller may obtain feedback fromn ADC, High Speed Counters,
PULSEFREQUENCY or other means. The obtained result is then
scaled and subtracted from the desired (set point) value to get "Err "
All computations are performed in 32-bit integers and the function
returns a 32-bit integer that can e assigned to any variable. Any
scaling for actual output (DAC or PWM) will be computed by the user
within the same CusFn and sent to the output.

10,000 PLC-PID PW M#4

Plant
Controller

AID#2

E.g. Implementing Closed-loop Digital Control with
PID computation function

E = 10000 - ADC(2)*20

11-13

A = PIDcompute(5,E)
setPWM 4, (A + 8000)/100

Comments. The set point value is 10000 units, the feedback value is read from ADC
channel #2 and then multiplied by 20 to convert (scale) it fo the same unit
as the parameter to be confrolled. PID computation channel #5 (assume
somewhere in the program a PIDdef for channel #5 has been executed
before) is then used fo compute the desired controller oufout value using
the error signal (= set point - feedback value ADC(2) x 20).

The desired output (stored in variable A) is then added fo the offset value
8000 and then scaled down by a factor of 100 before being sent out
physically via PWM Channel #4.

Important: In actual implementation, use a clock pulse such as 0.1s, 0.5s or 1s
etfc to periodically activate the PIDcompute() function so that digital
control in discrete-fime can be implemented. The PID sampling
period depends on the time constant of the system. For very slow
response processes such as the cooking temperature of a large body
of water, the time constant is very large and even slower than 1.0
seconds clock may be sufficient. Do not use unnecessarily short
sampling time because it increases computation fime and slows
down overall performance of the system.

PiDdef ch, Imt, P, I, D,

Purpose: To set up the parameters for a Proportional, Integral and Derivative
(PID) Controller function. The function PIDcompute() will make use of
the parameters defined here for the corresponding channel #ch.

ch = channel number (1-16)

Imt = Moximum (saturation) limit for the computed result.
P = Proportional Gain (Kg)

| = Infegral Gain (K)

D = Differential Gain (Kp)

Transfer Function of a PID Controller are defined as follow:

Kl
G(S)zKp‘F? +Kps

1

Porportional Band
1

Integral Time Constant

Kp = Proportional Gain =

K, = Integral Gain =

11-14

Important:

See Also :

All four parameters: Imt, P, I & D can be either 16 or 32-bit integer
constants or integer variables. For the Imt term, the computed
controller output value by the PIDcompute() function is not
allowed beyond the + Imt value (i.e. Imt represents the saturation point
of the computed controller output). PIDcompute() function
implements "Infegrator anti-windup" feature, which will avoid
integrating the error signal when output is already saturated .

When this statement is run, the integral and differential terms of
channel ch is set to zero. Hence PIDdef should be run only once
during initialization and not repeatedly executed. Otherwise the
PIDcompute() function will not run properly because of the loss of
infegral and differential data.

PIDcompute()

PMON ch
PMOFF ch

Purpose:

Example:

See Also :

PMON enables Pulse Measurement Function at channel #ch, whereas
PMOFF disables the channel. After enabling the channel, you may
then use the functions PULSEWIDTH(ch) and PULSEPERIOD(ch) to
obtain the width and period of the input pulses arriving at the pulse
measurement input pin. You must call PMON once during initialization
to enable the pulse measurement hardware. Otherwise the two
functions will only return 0. You should avoid repeatedly executing
PMON function, otherwise the pulse measurement hardware will be
reset repeatedly as well, and accurate measurement cannot be
obtained.

If you no longer need to measure the pulse-width or period for a
particular channel which has been PMON before, you should disable it
using PMOFF to save CPU time because pulse measurement is
interrupt driven and consumes CPU time.

PMON 1 : PMOFF 5
PULSEWIDTH(), PUSEPERIOD()

PRINT# n x$;y; z.... Statement

Purpose

Parameters:

To send a string of ASCIl characters formed by its parameter list (x$;
y; z) out of the PLC to other devices via the communication port #n.

n must be an infeger constant of between 1 and 8. Integer value in
the parameter list (y; z..) will be converted into the equivalent ASCII

11-15

representation. Each parameter must be separated by the
semicolon(;).

Acftion : The ASCII string is first formed by the PRINT statement using all the
arguments in the argument list and the completed string is then sent
out of the serial channel #n at one go. The PRINT statement
automatically sends a Carriage Return (CR-ASCII 13) out of the
specified serial port after sending out the last character in the
argument list. A PRINT statement that ends with a semi-colon ",
will not send the CR character.

If you have a long string to send than you can use ";" to break the
whole command info several lines, with each line ending with a ;"
except the last lines.

Examples PRINT #2 "The value of A+B = ";A+B;
PRINT #2 "Units"

Comments : IFA=5 and B=100, fthe string "The value of A+B = 105 Units" and a CR
character will be sent out via Comm. port #2. In TRILOGI simulation
mode, the ASCII string will be displayed on a pop-up window to simulate

PRINT action.
See Also : INPUTS$()
PULSEFREQUENCY/(ch)

PULSEPERIOD(ch)
PULSEWIDTH(ch)

Purpose: Return in Hz the frequency of the last input pulse; Return in
microseconds the width or period of the input pulses arriving at
channel #ch of the pulse-measurement pin. The pulse-
measurement channel #ch must have been enabled by the
PMON statement already. If the pulses stop coming in then
PULSEFREQUENCY will return a zero while the other two functions will
saturate at a certain maximum value (for TIOOMD+ it is equivalent
to about 3.28 seconds)

ch = channel # (1-8)
Example: A = PULSEWIDTH(1)
See Also : PMON, PMOFF

READMODBUS (ch, ID, addr)

Purpose . Use the MODBUS ASCIl or RTU protocol to automatically query a
MODBUS ASCIl or RTU slave device and obtain the desired 16-bit

11-16

Example

Comments :

Special

See Also

register data. The communication baud rate is the default baud rate
of that Comm port unless it has been changed by the SETBAUD
command.

ch - PLC Comm port number
(1 to 3 using Modbus ASCII or 11to 13 using Modbus RTU).
ID - device ID of the MODBUS device (1 to 255)
addr - zero-offset address of the holding register in the MODBUS
device.

relay [3] = READMODBUS(3, 5, 101)
The relay will confain the 16-bit data obfained from the MODBUS device
with ID = 05 and from register offset address 101 (in MODBUS term this
refer to the #40102 holding register) . Reading it info the relay[] channel
allows bit level manipulation by ladder logic. It can of course also be
read info any dafa memory.

This commmand automatically checks the response string received
from the slave device for the correct LRC and the slave address. The
status of the operation can be checked by the user program by
testing the STATUS(2) function, which will return a ‘0’ if there is any
error or if the slave device is not present.

. This command by default uses MODBUS function 03 to perform the

read, which means that it is designed o read from holding register
addresses (4-xxxx). You can force it to change to using function 04 in
order to read from addresses 3-xxxx by executing SETSYSTEM 6,4
(only for CPU with firmware revision r47 and above).

: READMB2, WRITEMB2, WRITEMODBUS, STATUS(2),

NETCMD$(), SETSYSTEM

*READMB?2

Purpose

Parameters:

ch, ID, addr, var, count {* Applicable only to M+ firmware r44 or higher}

: Think of this as the mulfi-word version of READMODBUS command.

Unlike the READMODBUS command which is a function that returns a
single 16-bit word, this command is implemented as a statement so
that multiple words of data can be stored into the PLC internal
memory .

ch - PLC COMM port number
(110 8 using Modbus ASCII or 11to 18 using Modbus RTU).
ID - Device ID of the MODBUS slave device (1 to 255)

addr - Zero-offset address of the holding register in the
MODBUS slave device starfing from 0 = 40001.

11-17

Example

Comments

Special

See Also

var - the starting variable in the master for storing the
returned data. (may be a DM or any system variable)
count- number of variables to read (max. =16 in M+ PLC).

READMB2 3,5,101,DM[10].8

The PLC will use MODBUS ASCII protocol, via its Comm port #3, fo query
the slave MODBUS device with ID = 05 and ask for 8 words of data
starting from register offset address 101 (in MODBUS term this refer to the
#40102 holding register) . Once it receives the refurned data these 8
words will be stored in the memory locations: DM[10], DM[11],.....DM[17].

This command automatically checks the response string received
from the slave device for the correct slave address and LRC (or
CRC16 RTU protocol is used). Like READMODBUS command, the
status of this operation can be checked by the user program by
testing the STATUS(2) function.

. This commmand by default uses MODBUS function 03 to perform the

read, which means that it is designed to read from holding register
addresses (4-xxxx). You can force it to change to using function 04 in
order to read from addresses 3-xxxx by executing SETSYSTEM 6,4
(only for CPU with firmware revision r47 and above).

: READMODBUS, WRITEMODBUS, WRITEMB2, STATUS(2),

SETSYSTEM

REFRESH
Purpose

To Force immediate refresh of the physical inputs and outfputs. This
can be used after executing a SETBIT or CLRBIT command on
an output[n] variable and to force the physical output to change
immediately (subject to I/O refresh fime delay). Otherwise, the
physical oufput will only be updated during the normal refresh
cycle which will occur only at the end of every ladder logic scan.

This is useful for situations that require immediately action such as
shufting down a load during an emergency. This command is likely
to be used mainly by an Interrupt CusFn. Note that REFRESH
command on M-series PLC takes up to 2ms to complete and if
used frequently, could increase the program scan time
significantly.

REM (or') Statement

Purpose

To allow explanatory remarks to be inserted in a program. The text
after the REM statement until the end of the line will be ignored by

11-18

Examples

the compiler. An ablbreviation for the REM statement is the
apostrophe (')

REM Waiting for the right time to turn on
" This is also a remark line.

RESET
Purpose

To perform a software reset of the PLC from within a CusFn. All the
variables will be reset to zero or inactive and all the hardware
outputs such as DAC and PWM will be turned OFF. The effect is the
same as the Master Reset [MaRST] function in the ladder logic. The
first scan bit (1st.Scan) will also be turned ON for one scan time.

However, if the program is stuck af some dead loop (such as
WHILE, FOR-NEXT) in a CusFn, then [MaRST] would not be executed
since the ladder program would not have a chance fo scan the
ladder rung containing the [MaRST] function. If this command is
used by an interrupt service function, then it is possible to get the
system out of the dead loop since the interrupt function can
interrupt the dead loop and reset the PLC.

RETURN

Purpose

See Also

Unconditionally ends the execution of the current CusFn and return
to the caller (which is either the ladder program or another Cuskn
which has executed a CALL command).

Use of the RETURN statement is opftional if there is no conditional
ending required. After executing the last statement the CusFn will
return to the caller automatically.

CALL

RSHIFT i,n Statement

Purpose

Examples

To shift the integer variable i 1 bit to the right. i must be either an
integer variable, a DM[n] or a system variable such as relay[n],
output[n], efc.

RSHIFT instruction permits more than one variable to be chained
together before performing a bit shiff. The parameter n indicate
the number of channels to be chained starting from i upward. n
=1 if only one variable is involved.

RSHIFT relay[2].3

11-19

Comments :

See Also

The relay channels #2,#3, and #4 [(which represent relays number #17
fo #64) are chained together in the following manner:
RSHIFT

15 0 15 0 15 0

Relay[4] Relay[3] Relay[2]
Bits are shifted from the upper channel towards the lower channel. Bit
#0 of Relay[4] will be shiffed info Bit #15 of Relay[3] and so on. Bit #0 of
the lowest channel Relay[2] will be [ost.
LSHIFT

SAVE_EEP data, addr

Purpose

Example

See Also

To store a 16-bit integer data in the users definable EEPROM
address addr for non-volatile storage. If you attempt to save a 32-
bit data, only the lower 16-bit will be saved. To save the entire 32-
bit data, save the upper 16-bit using the GETHIGH16() function
and the lower 16-bit directly in two separate locations.

data - may be a 16-bit infeger constant or variable.

addr - EEPROM address. Actual PLC may have less EEPROM
space. Please refer 1o your PLC's reference manual for
the upper limit.

save EEP relay[1],100

LOAD_EEP(), GETHIGH16(), SETHIGH16, LOAD_EEP$() and
SAVE_EEP$

* SAVE_EEP$ strdata, addr {* Applicable only to PLC with firmware r44 or higher}

Purpose

Example

Comments .

See Also

To store a string strdata in the user's definable EEPROM address addr
for non-volatile storage.

stringdata - may be any string constant or string variable.

addr - EEPROM address (1,2,3...). Please refer to your PLC’s
reference manual for the upper limit of EEPROM
space.

save EEP$ A$,3

The content of AS will be stored at string space #3 of data
EEPROM.

LOAD_EEP$()

11-20

Save_EEP$ Implementation on M+ PLC

Save EEPS and Load EEP$ are two new TBASIC commands available only to
the newest M+ PLC with firmware revision r44 and above. These commands
allow you to save “strings” into the non-volatile data EEPROM area of the PLC.
The EEPROM space is divided into 40-byte chunks for string storage. l.e.
regardless of the length of the string, each string storage location will occupy a
fixed 40-character length. Hence if “stringdata” parameter is longer 40
characters then only the first 40 characters will be stored in the EEPROM, the
remaining characters will be discarded.

The string and integer data actually share the same pool of data EEPROM
space. However, the string spaces are allocated from the top of the data
EEPROM space downward, while the integer spaces are allocated from the
bottom of the data EEPROM space and grow upward. This implementation
allows say both SAVE EEP n, 1 and SAVE_EEPS xS, 1 to be executed in the
same program without the string and infeger data writing over each other
space.

However, when the addresses grow larger up to a certain point, the infeger
and string data space will cross path and overwrite each other's space. It is
therefore the programmer’s responsibility to check that this does not happen.
Here is how:

Assume the total EEPROM space for infeger data = N words (16 bit).
Total number of data EEPROM space = 2N bytes
=> Maximum number of string EEPROM space = 2N/40 (rounded down).

To determine the upper limit of one type of storage, you have 1o first decide
how much space you want to allocate to the other type.

E.g. 1: N = 1700, and you want use the first 510 location for integer data, that
means the maximum number of string space available = (1700-
500)*2/40 = 59.

E.g. 22 N = 7700, and you want to store 200 strings. The maximum number of
infeger space available = (7700*2 — 200*40)/2 = 3700.

11-21

SETBAUD ch, baud_no

Purpose

Examples

To set the communication "Baud Rate” of the PLC’s serial channel
#ch. All the M series PLC serial ports are defined as 8 data bit, 1
stop bit, and no parity and each has been preset 10 a certain
default baud rate, which the PLC will assume every time its powers
up. The baud rate may or may not be changed, depends on the
PLC model. Please refer to the PLC's User's manual for the baud _no
that represent the baud rate of each serial channel and the range
of baud_no each of these serial ports may assume.

Caution should e taken when programming the baud rate of the
"Host link” port because if a wrong baud value is set the host PC
may not be able to communicate with it, If this happens suspend
the PLC using its hardware switch and reset the PLC and re-load
the program with correct sefting.

SETBAUD 3,3 “ Set serial port #3 to 9600.

SETBIT v,n

Purpose

Examples

Comments :

See Also

To set the bit #n of the integer variable v o '1'. n is an integer
constant or variable of value between 0 and 15. v may be any
integer variable or a system variable such as relay[n], output[n],
etc. However, if vis a 32-bit infeger, SETBIT will only operate on
the lower 16 bits.

Following digital electronics convention, bit O refers to the least
significant bit (rightmost bit) and bit 15 the most significant bit.
(leftmost bit) of the 16-bit intfeger variable. Please refer to page 10-
4 in “"Chapter 10: TBASIC Statements, Functions, Operators and
Variables” for the mapping between I/O bits and the variables.

SETBIT output[2],11

output #28 will be turned ON.
(Output channel #2 bit #11 = Output #17 +11 = 28)

CLRBIT, TESTBIT()

SetCtrSV n, value
SetTimerSV n, value

Purpose

Change the Set Value (S.V,) of the Counter #n or Timer #n to
value. This statement to allow the user to modify the S.V. of the PLC
internal timers and counters without changing the source program.
A TBASIC function can be written easily to make use of a few digital
or analog inputs to modify the SV of these internals timers/counters.

11-22

Examples

Comments

Reloted

See Also

The new S.V is also stored in the program EEPROM and hence is
non-volatile. (See sample program “set TCSV.PC4”)

n should be between 1 and 128.
value should be between 0 and 9999.

SetCtrSvV 10,1234
SetTimerSV 3, GetTimerSV(3)+10

Counter #10 will assume a S.V. of 1234..
S.V of Timer #3 will be increased by 10.

The present values (P.V.) of fimers and counters can be read or
written directly as integer variables “TimerPV[n]” & "CtPV[n]". But the
Set Values can only be changed by these two functions.

GetCtrSV(), GetTimerSV()

SETDAC n, x Statement

Purpose

Examples

Comments :

To set channel #n of the PLC's Digital-to-Analog Converter (DAC)
with the 16-bit infeger result of the expression x. n must range
between 1 and 16. Once set, the DAC channel will latch the set
value until the next SETDAC statement on the same channel is
executed.

SETDAC 5,A+B*16

DAC channel #5 will be set with the value of A+B*16. A run- time error
will result if n is less than 1 or is greater than 16. The actual number of
DAC channels depends on the PLC model in use.

SETHIGH16 v, data

Purpose

Examples

See Also

To assign the upper 16-bit of a 32-bit integer variable v to data. The
lower 16-bit of v is unaffected. This can be used to construct the
value of a 32-bit integer data using two 16-bit data obtained from
either the EEPROM or the DM[n].

A = DM[2]
SETHIGH16 A,DM[1]

GETHIGH16()

SETIO labelname -- Please refer to the definition of CLRIO command

11-23

SETLCD n, offset, x$

Purpose

Examples

To display the string expression x$ on Line #n on built-in
alphanumeric Liquid Crystal Display (LCD) or compatible Vacuum
Fluorescent Display (VFD). x$ may be formed by concatenation of
various stings using the '+ operafor (e.g. Temp
="+STRS(A,3)+CHRS(223)+" C”"). Integers must be converted to
string using the STRS() or HEXS() function to be accepted by this
function.

Special case: if n =0 the string xS will be sent to the LCD’s
"Instruction-Register” which allows hardware-specific LCD
configuration such as clear screen, set cursor ON/OFF efc.
(please refer to LCD’s manual for details)

The parameter offset = 1 1o 40 allows you to send the string x$
beginning from the offset™ position. Only the characters position to
be occupied by x$ will be written o the display, other characters of
the display remain unaffected.

The PLC may support LCD display modules capable of displaying
up 1o 4 lines x 40 characters per line of alphanumeric characters. If
the display has fewer lines or fewer characters per line, the
unavailable lines or characters will be ignored by the PLC. Once
set, the LCD display will latch the set value until the next SETLCD
statement on the same line and same offset is executed. On the
TRILOGI simulator, the result of the SETLCD is displayed together with
the Special Variables view screen.

SETLCD 1,1,"This is a 1x20 LCD Display™

SETLED n, m, value

Purpose

To display the integer value on the PLC's built-in 7-segment LED
displays, starting from the nth digit and occupying m number of
digits. Leading zeros will be added to the left of the display if value
occupies less digit than that specified by m.

However, if m is less than 1 (e.g. m = 0) then value is treated as a
single 8-bit ASCII character to be displayed rather than as a
numeric value. Special symbols may be displayed on the LED
panel if the LED driver is able to display the corresponding ASCII
character.

n must be between 1 to 16. The digit position is counted from left
fo right. i.e. the leftmost LED digit is digit # 1. TRILOGI supports up to
16 LED digits. The actual numiber of LED on the PLC may vary from
0 to 16, in this case only the available digits will be effective. Value

11-24

Examples

Comments :

may be a 16- or 32-bit integer numiber. Once set, the LED display
will latch the set value until the next SETLED statement on the same
digit is executed. On the TRILOGI simulator, the result of the SETLED
is displayed together with the Special Variables screen, which may
be viewed by pressing the <V> key while in the simulation mode.

SETLED 5,4,89

This command is not implemented on any M-series PLC.
LED digit #5 to #8 (counting from left to right) displays 0089.

SETPASSWORD string

Purpose

Example

Comments :

: When this statement is executed, the PLC will not properly respond

to any host link commands sent to it except the command
"PWxxxx...xx" which must contains the same string “xxxx...xx" (not
more than 19 characters) as defined in the SETPASSWORD
command. All other commands will receive a "PWER" response
indicating a “password error” state. Once the correct password has
been accepted the PLC will work as normal and respond to all host
link commands. Execution of "PW” host link commmand without any
sting will put the password lock back in force to prevent
unauthorized access.

SETPASSWORD *1 love TRiLOGI”

When using TRILOGI the software will automatically prompt you to
enfer the password string if it encounters a PLC which has been
password-locked. Note that the password is case sensitive. Password
locked PLC cannot be accessed by older version of TRILOGI.

This feature is mainly used fo profect an unattended PLC which is linked
to an auto-answer modem. Without password protection anybody can
dial in with a TLServer or TL41.exe and have full confrol of the PLC, which
may be a serious security problem. Within the PLC software you may also
use a timer to periodically re-arm the PLC with this command for
maximum protection. You can also use different passwords for different
time of the day or a set of rofating passwords fo provide greater security.

SETPROTOCOL ch, mode

Purpose:

A TIOOM+ series PLC automatically senses the type of
communication protocols sent to it and responds accordingly. You
may however fix the protocol type so that it does need to check the
protocol type before responding. This command also allows he PLC

11-25

to

be defined as "No Protocol” so that it will not automatically

respond to data that it receives which appears like one of the

SU

pported protocols. This may be important in some applications in

which the PLC serial port is used purely 1o receive incoming data via
INCOMM and INPUTS and you do not want it to respond to some
data that appears to it as a valid communication protocols This is
also useful for implementing user's own communication protocol
without worrying about conflict with the existing protocoils.

ch

=1, 2 or 3 (COMM port number)

mode = O - Auto sensing (default mode)

1 - Fixed at RTU mode

2 - Fixed at EMIT mode

3 - Fixed at MODBUS ASCIl mode

4 - Fixed at OMRON C20H protocol mode

5 - Fixed at NATIVE host link command mode

10- No protocol. (For creating user own custom
protocol.

IMPORTANT: Please note that if you set the protocol to other than the “*Native”

(mode=5) or “Auto” (mode=0) that serial port will no longer
respond to commands from TRILOGI and you will encounter
"Communication Erors” when you 1ty 1o perform any
communication using TRILOGI with that serial port. You can sfill
use the other unaffected serial port (e.g. COMM3, RS485) that
support host link commands.

To regain communication with the serial port you will have to
execute another SETPROTOCOL function that set it to mode 0 or 5
(assuming it has been written into the program), or you must reset
the controller by turning OFF the power and then ON again. If you
execute a SETPROTOCOL using the 1ST.Scan then you must furn
on DIP switch #4 before powering up the PLC so that the
SETPROTOCOL command will not be executed and you can
regain control of the PLC using TRILOGI.

SETPWMn, X,y

Purpose

To set channel #n of the PLC's Pulse-Width Modulation (PWM)
output with duty cycle represented by (x/100 %) and af a
frequency (in Hz) given by parametery.

n must range between 1 and 8. Once set, the PWM channel will
latch the set value until the next SETPWM statement on the same

11-26

Examples

Comments

channel is executed. x should range between 0 and 10000. If x is
more than 10000, the duty cycle will be set to 100%

SETPWM 1,4995,2000

PWM channel #1 will be set fo operate at 49.95% quty cycle for PWM
that can resolve up to 0.01%. The actual resolution will depend on the
PLC's PWM resolution. The PWM frequency is set to 2000 Hz or nearest.
For a 10-bit PWM the best resolufion is about 1/1024 = 0.1 %. This
means thar in the above example the PWM will be rounded fto 50%.
Please check the target PLC's manual for the actual resolution.

SETSYSTEM n, data

Purpose:

Allow changing of certain default system’s parameters.

n data

of wait states (multiple of 0.15s) while waiting for a
response from a slave controller after executing a
NETCMDS or a READMODBUS/ WRITEMODBUS command.
Default number of wait state = 1.

e.g. SEISYSTEM 1, 3

The PLC will wait 3 x 150ms = 450ms for a valid response
from the slave confroller.

2 # of retry if NETCMDS or READMODBUS/ WRITEMODBUS
failed to get a vald response from slave confroller.
Default = 2. (a total of 3 tries)

e.g. SETSYSIEM 2,5

The PLC will retry up to 5 times if it failed to communicate
with the slave. Note longer waiting time when failure
occur if you increase the numiber of retries.

3 0 - Respond as fast as possible 1o hostlink or MODBUS
commands received from the host computer or
another PLC.

1 - (default) to allow at least a 0.0Ts (10ms) to elapse
before responding to host link commands received
from the host computer or another PLC. This delay is
needed for auto-switch type RS485 converter 1o
allow time for the hardware fransceiver to switch
direction.

n Data

This command works on firmware r39 & above.

11-27

4 0 - (default) simple decoding for both HSC1 & HSC2.
1 — enhanced quadrature decoding for HSC1

2 — enhanced quadrature decoding for HSC2

3 — enhanced quadrature for HSC1T & HSC2

This command works on firmware r47 & above.

5 0 - (default) Al DM data cleared to 0 during hard or
soft reset.

k — DM[1] to DMIk] content are not cleared to zero
during hard or soft PLC reset.

This command works on firmware r49 & above.

16 4 — Force READMODBUS & READMB2 to use function
04 to communicate with Modbus slaves.

3 — (default) Force READMODBUS & READMB2 to use
function 03 to communicate with Modbus slaves.

This command works on firmware r49 & above.
8 k- Allow the PLC to change its own ID to k (O to 255)

This commmand works on firmware r49 & above.
256 | 0- (default) Interrupt CusFn not run during I/O refresh.

1 - dallow Interrupt CuskFn to run during /O refresh
(shorter interrupt latency).

STATUS (n)
Purpose ; Return the status of various system operations.
Function Returned value
STATUS (1) 0 - Normal power on reset
1 - Reset by Watch Dog Timer (WDT)
STATUS (2) 0O - READMODBUS or WRITEMODBUS failure
1 - READMODBUS or WRITEMODBUS successful
STATUS (8) PLC’s ID address stored in EEPROM for host
communication
Examples IF STATUS(2) “ MODBUS READ/WRITE OK
ENDIFm
STEPCOUNT (ch)

11-28

Purpose

. While the stepper motor confroller is sending out pulses, this

function can be used to monitor the numlber of stepper pulses sent
to the Stepper Motor Channel #ch since the execution of the last
"STEPMOVE" command. Hence this function returns the relative
numiber of step Mmoves.

This function can also be used to "measure” the physical size of a
part if we use the stepper motor to drive a sensor and use the
STEPSTOP command and the interrupt input to halt the stepper
motor when the edges are detected. The physical size is then
computed using the numiber of steps the stepper motor travels
from one edge to another edge. The center position can e easily
determined using such data too.

STEPCOUNTABS (ch)

Purpose

Retuns the absolute position of the stepper motor #ch. This
function returns a zero if a STEPHOME command had just been
executed and the stepper has not been moved since.

STEPHOME ch

Purpose

. Set the current position counter of stepper # ch to zero. This
indicates a new “Home” position of that stepper motor. This
command should be executed only when the stepper has reached
a particular position to be regarded as the home position. All
STEPMOVEABS command executed subsequently will be relative to
the defined home position.

STEPMOVE ch, count, r

Purpose

To activate the PLC's built-in stepper motor pulse generator
channel #ch to output count number of pulses. The speed and
acceleration parameters for the motion is defined by the
STEPSPEED statement on the same channel # ch, which must be
executed at least once before the first STEPMOVE command is
issued. After executing the STEPMOVE command the PLC hardware
will tfake over the actual pulse generation operation. The user's
program will continue to execute even though the pulse
generation is not yet completed. The internal relay #r can be
used to signal to the other pars of the ladder program regarding
the status of pulse generation, as follow:

11-29

Important:

Examples

Comments

See Also

minimum

When STEPMOVE command is first executed, the internal relay #r
will be cleared before the first pulse is sent. After the completion
of the movement (i.e. when all the pulses have already been sent),
the relay #r will be set.

ch should be between 1 and 8. Count is a 32-bit infeger numiber
which allows you to program the stepper motor to move from 1 to
+2% (i.e. 2,147,483,647) steps. Count can also be an infeger
variable A-Z. However, If you use a 16-bit variable such as DM[n] for
count then the range of movement can only be between 1 to
32,767.

Speed (pps) Stepper pulse output speed trajectory

A

Desired speed If the total num.ber of
.. steps to move is less

than 2 times
accsteps, Desired
speed will not be
reached.

» No. of Steps

pps

. & »'

— .
© accsteps ! Total steps - 2xaccstep§ : accsteps

Pulse generation can be interrupted by issuing a STEPSTOP
command in another Cuskn, which may occur say, in cases when
the hardware hits a limit-switch and must stop the motor
immediately.

When a stepper channel is already activated (i.e. mid-way through
its pulse generation) repeat execution of STEPMOVE command on
the same channel will be ignored by the PLC. Re-execution of the
STEPMOVE command on this channel can only take effect after
the channel's pulsing operation has been completed by itself or
aborted by the STEPSTOP command.

When in TRILOGI simulation mode, execution of the STEPMOVE
command will bring up a pop-up window that displays all the
parameters of the motion path.

STEPMOVE 1,5000,10

Send ouf 5000 pulses on channel 1 and at the end of motion turn ON
relay #10.

STEPMOVEABS, STEPCOUNT(), STEPCOUNTABS(),
STEPSPEED, STEPSTOP, STEPHOME

11-30

STEPMOVEABS ch, position, r

Purpose

See Also

. This new command allows you to move the stepper motor # ch to

an absolute position indicated by the position parameter. At the
end of the move the relay # r will be turned ON. Position can be
between -23' to +2% (i.e. about +2 x 10°). The absolute position is
calculated with respect to the last move from the *HOME" position.
(The HOME position is set when the STEPHOME command is
executed). The speed and acceleration profile are determined by
the STEPSPEED command as in the original commmand set.

This command automatically computes the numiber of pulses and
direction required to move the stepper motor to the new position
with respect to the current location. The current location can be
determined at any fime by the STEPCOUNTABS() function.

Once STEPMOVEABS command is executed, re-execution of this
command or the STEPMOVE command will have no effect until the
entire motion is completed or aborted by the STEPSTOP command.

. STEPCOUNTABS, STEPHOME , STEPSPEED, STEPMOVE,

STEPSTOP, STEPCOUNT

STEPSTOP ch

Purpose

Examples

Important

See Also

To abort a stepper channel #ch which is in motion due to
exceptional circumstances.

STEPSTOP 2

Motion aborted by STEPSTOP command will not trigger the end-
motion relay #r specified in the STEPMOVE command.

STEPCOUNT, STEPSPEED, STEPMOVE

STEPSPEED ch, pps, acc

Purpose

To set the speed pps and acceleration/retardation acc parameters
for the PLC's stepper motor motion controller (pulse-generator)
channel #ch. ch should return a value of between 1 and 8. Speed
pps is based on no. of pulse per second (pps) output by the pulse
generator. The acceleration acc determines the total number of
steps taken to reach full acceleration from standsfil and the

11-31

numiber of steps from full speed to a complete stop. The stepper
motor calculates and performs the speed trajectory according to
these parameters when the command STEPMOVE is executed.

STEPSPEED command should be executed at least once before
executfing any subsequent STEPMOVE command to control the
pulse generation. The defined parameters will be rememibered
until another STEPSPEED statement operating on the same stepper
channel is executed again.

Examples STEPSPEED 2,2000,20

Comments The PLC's Stepper motor confroller channel #2 is configured fo send out
pulses at 2000 pulses per second when STEPMOVE instruction is
executed. It follows a linear acceleration trajectory which takes 20
pulses to reach the full speed of 2000 pps. This is equivalent to an
acceleration of

2 2
a= Y - 2000 _ 450000 puise/s2
2S 2x20

STR$(n)

STR$ (n, d)

Purpose To return a string that represents the decimal value of the numeric
argument n. If the second format is used then this function will
return a string of 'd” number of characters.

Examples A$ = STR$(-1234)

B$ = STR$(-1234,7)
Comments : AS will confain the string : "-1234" , BS will contain the string "-001234"

STRCMP(AS$, BS)

Purpose Perform a comparison between its two string expressions AS and
BS. IF AS and BS are equals, STRCMP will return a 0, if AS is of
lower order (in ASCII table order) than BS the function will retumn a
negative value. Otherwise it returns a positive value.
Examples IF STRCMP(A$, B$)=0 THEN
STEPMOVE 1,1000,1
ENDIF
Comments IF AS and BS are the same then turn on the stepper motor #1.
STRLWR$(AS)

11-32

Purpose . To return a string which is an all-lowercase copy of AS.

STRLWR$(A$)+Z$
STRLWR$(C$)

Examples B$
C$

Comments : The second example shows how to convert a string fo all lower case.

STRUPR$(A3)
Purpose . To return a string which is an all-uppercase copy of AS.
Examples B$ = STRUPR$(A$)

C$ = STRUPR$(C$)

Comments : The second example shows how to convert a string fo upper case.

TESTBIT (v, n)

Purpose . To return the logic state of bit #n of the variable v. The function
returns 1 if the bit is *1’, otherwise it returns 0.

n is an integer of value between 0 and 15. v may be any integer
variable, however, if vis a 32-bit infeger TESTBIT will only test the
lower significant 16 bits. Following digital electronics convention,
bit O refers to the least significant bit (rightmost bit) and bit 15 the
most significant bit. (leftmost bit) of the 16-bit integer variable.
Please refer to page 10-4 in "Chapter 10: TBASIC Statements,
Functions, Operators and Variables” for the mapping between 1/O
bits and the variables.

Examples TESTBIT (Input[2],3)

Comments : To test whether input #20 is ON
(Input channel #2 bit #3 = Input 17 +3 = 20)

See Also . SETBIT, CLRBIT

TESTIO (labelname) -- Please refer to the definition of CLRIO commmand

TOGGLEIO labelname -- Please refer to the definition of CLRIO command

VAL (x$)
Purpose : To return a value of a decimal number contained in the argument

xS,

11-33

Examples

Comments :

B = VAL(''123')*100
B should contain the value 12300

WHILE expression ENDWHILE

Purpose

Syntax

Examples

Comments :

To execute a series of statements in a I0op as long as a given
condition is frue.

WHILE expression

ENDWHILE

When WHILE statement is encountered, the expression will be
evaluated and if the result is true, the statements following the
expression will be executed untii the ENDWHILE statement.
Thereafter, execution branches back to the WHILE statement and
the expression is evaluated again. The loop statfements will be
executed repeatedly until the expression becomes false.

Waming: Be careful that the WHILE loop will not be an endless
loop as the PLC will appear to freeze up, being trapped in an
endless-loop execution. TRILOGI simulator aftempts to detect this
situation by giving a warning message if a loop is executed for an
unduly large number of loops.

WHILE S =1
IF INPUT[1] & &HO002: S = O : ENDWHILE
ENDWHILE

Execution will only be terminated when input #2 is ON. WHILE
loops may be nested; i.e. a WHILE loop may be placed within the
context of another WHILE loop. Each Loop must have a separate
ENDWHILE statement fo mark the end of the loop.

WRITEMODBUS ch, DevicelD, address, data

Purpose

. Automatically write the 16-bit data to a MODBUS ASCII device using
the MODBUS ASCII protocol. The communication baud rate is the
default baud rate of that COMM port unless it has been changed
by the SETBAUD command.

ch - PLC COMM port number (1-8)
DevicelD - Device ID of the MODBUS device (1 to 255)

11-34

address - Lero-offset address of the holding register in the

MODBUS device.
data - the 16-bit data to be written to the MODBUS
device
Example WRITEMODBUS 3, 8, 1000, 1234

Comments: The data 1234 will be written fo the MODBUS device with ID=08 at the
holding register offset address 1000 (in MODBUS convention this refer to
holding register #41001).

The command automatically checks the response string received
from the slave device for the correct LRC and the slave address. The
status of the operation can be checked by the user program by
testing the STATUS(2) function, which will return a ‘0" if there is any
error or if the slave device is not present.

See Also : READMODBUS(), STATUS(2), NETCMD$()

WRITEMB?2 ch, ID, addr, var, count { Applicable only to M+ firmware r44 or higher}

Purpose . Think of this as the multi-word version of WRITEMODBUS command.
Parameters . ch - PLC COMM port number
(110 8 using Modbus ASCII or 11to 18 using Modbus RTU).
ID - Device ID of the MODBUS slave device (1 to 255)

addr - Zero-offset address of the holding register in the
MODBUS slave device starting from 0 = 40001.

var - fthe starting variable in the master whose data is to be
sent out (may be a DM or any system variable)

count - number of variables to send (max =16 in M+ PLC).

Example : WRITEMB2 13,5,101,DM[10],8

Comments : The PLC will use MODBUS RTU protocol, via its Comm port #3, to write 8
woras of data from DM[11] to DM[17] to the slave MODBUS device with
ID = 05 and info it's reqister offset address 101 to 108 (in MODBUS ferm.
these refer to the #40102 to #40109 holding registers) .

The command aufomatically checks the response string received
from the slave device for the correct slave address CRC16. Like
READMODBUS command, the status of this operation can be
checked by the user program by testing the STATUS(2) function.

See Aso : READMB2, WRITEMODBUS, STATUS(2)

11-35

Appendix 1: Application Notes & Programming Examples

Important Notes to Programmers of TRILOGI Version 6.x

1. Understanding Ladder Logic Execution Process

Like all industrial PLCs, the CPU of the M-series PLC first checks the logic
states of the physical inputs and copies them into memory. During the
ladder logic scan the actual logic states of the physical Inputs (except
for interrupt inputs) are ignored by the PLC. The CPU uses the memory
copy of the inputs 1o execute the ladder program.

The CPU executes its ladder logic program starting from the top rung of
the program to the bottom rung. When the CPU reaches a ladder rung
that activates a {CusFn} or {dCusF} that custom function will be
executed. The CPU will only continue to scan the rest of the ladder
program when the current custom function ends normally. Hence the
order in which a ladder rung is placed within a ladder program can
have an effect on the behavior of the program.

Output bits which are changed as a result of the program execution will
only be updated to the physical outputs at the end of the ladder logic
scan. One scan time is defined as the time it takes to execute the 3
steps (read physical inputs, execute program, update physical outputs).
The CPU repeats these 3 steps continuously all the time, known as
"Ladder Logic Scanning”.

Hence, it is important to note that the variables INPUT[N] s and OUTPUT[N]
in TBASIC are not the actual physical I/Os of the PLC, but only a memory
representation of the actual 1/Os which will be updated only during the
/O update cycles. The logic states of physical inputs are copied into the
INPUT[N] variables during input scan and the physical oufputs are set to
the logic states contained in the OUTPUT[N] variables during output
updates.

Therefore, one potential error that traditional BASIC programmers tend to
commit is to attempt to poll for a change in the variable INPUT[N] within
TBASIC such as the following:

>< WHILE INPUT[1] =@
ENDWHILE
This will result in an endless loop since the value of the variable INPUT[T]
will never change during execution of the custom function regardless of

the actual logic states of physical input #1 to #8. The only way to force
upon a physical /O update is to use the REFRESH command, but it is

Al-1

not a good practice for ladder logic programming to update physical
I/Os in the midst of a program execution. The REFRESH command is
meant more for forcing an immediate output to be turned ON or OFF
during time-critical situations.

Hence it is important to allow a ladder logic program to finish its scan so
that the physical I/Os can be updated. You should never hog the CPU
within a particular custom function as this will mean the rest of the ladder
program don't have a chance to be executed in a fimely manner.

. The Difference Between {CusFn} and {dCusF}

It is very important 10 understand the difference between the two
formats of the custom functions once you understand how the ladder
logic scanning process works as described in the last section. If you use
the {CusFn}, the custom function will be executed EVERY SCAN of the
ladder logic program as long as its execution condition is ON.

On the other hand, the {dCusF} (known as the differentiated or one-shot
format) is executed only ONCE when its execution condition goes from
OFF to ON. The execution condition must go OFF and then ON again for
the function to be executed again. It is not difficult o see that the
differentiated format is used far more frequently than the other one
since most custom functions involve arithmetic and when a condition is
ON you most likely want the computation to be performed ONCE and
not repeatedly in every scan of the ladder logic. You can easily
understand the difference between the two formats if you run the
following sample program:

Clk1.0s Fn #1
{Cusfn}
CIk1.0s Fn_#2
{dCusf}
Custom Function #1
A=A+1
Custom Function #2
B=B+1

Run the program in simulator and press the <V> key to view the
changes in the variables A and B. You will see that B is incremented by

Al-2

one every second, while A is incremented wildly for 0.5s and then stops
for 0.5s. Try it! It can be very educational!

If you want to periodically check the status of an analog input or the reall
fime clock, you should use a clock pulse (0.1s, 1.0s etc as shown in the
example) and connect to a {dCusF}. Connecting to non-differentiated
version would mean checking thousands of times for half the period and
not at all for the other half period -- certainly not the infended outcome.

. Timers Contact Updating Process

All the timers' contacts of the PLC, like the inputs and outputs, are
updated simultaneously at the beginning of every ladder logic scan
and not at the rung that contains the (TIM) coil. So if you are using self-
reset timer, please note that if a timer times out its contact will be ON
from the beginning of the ladder logic rung until the rung that contains
the self-reset circuit. Thereafter the timer contact will be OPEN since the
coil has been self-reset.

Hence please note that you should place the self-reset timer rung after
all the ladder rungs that utilize the said timer contact. This allows those
ladder rungs which use the timer contact to have a chance of being
executed before the self-resetting rung clears the timer.

A pulse will be sent to Out 5 periodically determined by
the Set Value of timer T1

T1 Outbd
(Out)
T1 T1
%
// (TIM)

TRILOGI Sample programs

There are many well-documented demo as well as practical TRILOGI
program examples included in the following TRILOGI installation folder:

<TRILOGI installation folder>\usr\samples

When you click on TRILOGI's “File -> Open (Local Drive)’ command, you
will be able select the user's folders where program files are stored. By
default, only two users are defined: "Administrator” and “samples” as follow:

Al-3

£ Loading Local File

Look In: |Jusr - e IE

] Administrator
] samples

File Hame: | |

Files of Type: ‘TH]LOGI Veersion 6 Files | - |

| Open H Cancel |

You should open the “samples” folder and select any files with “.PC6”
extension for viewing.

& Loading Local File

Look In: ||j samples “"| E?Eily
FileService_Modem |] ®¥Server D Call.pct |:

I HMI [} aDC.pc6 [} clock-zh.PC6 [
317000 [} Analog-Timer.PCe [} Clock.pCe [
3 ladderExamples |__"‘] Blank.pcG D ClockPulses.pch |:

4] Il | [»

File Hame: | |
Files of Type: |THiLOGI Version 6 Files | - ‘
| Open | ‘ Cancel ‘

There are also sub-folders within the “samples” folder where sample
programs that relate o a particular topic or device are stored, such as
those relates 1o using the MD-HMI. We strongly encourage you fo open
these example programs to see how these programs are structured. Most
of these programs can be run in the simulator except those that involve
communication with other devices or high speed counters.

Display Alphanumeric Messages on built-in LCD Display

M-series PLC such as the TIOOMD-1616 supports built-in LCD display port
that allows low cost connection to industry standard LCD display module.

For such PLC, programming of the LCD display is via the SETLCD statement
supported by TBASIC language.

Assignment:

Every 1 second, display a message as follow:

Temp. Check
Sitting Rm = xx °C.

Where xx depends on reading of A/D #1 which is returned by function
ADC(1).

Full scale A/D is 4096.
A/D range (0 to 4096) =Temperature 0 to 50°C

| Clk:1.0 Fn_if1
| | | [dCusf]

Custom Function #1

setLCD 1,1, “Temp. Check” ° Display at at Column 1, Linel
setLCD 2,1, “Sitting Rm = “+ STR$(ADC(1)*50/4096, 2)
+CHR$ (223)+7C”

Comments:

Every one second, the special bit Clk:1.0s closes and activates Function #I.
Within the Custom Function #1, ADC(1) reads the A/D converter #I and
converts it into degrees. The integer value is then converted into a two-digit
string using the STR$ function and concatenated to the rest of the text string for
display using the SETLCD command.

Simulation of the display string to built-in LCD is supported on TRiLOGI
Version 6.x. When in Simulation mode, press <V> key to view the Special
Variables and the messages will appear in an LCD Simulation window.

2. Setting Timer/Counter Set Values (S.V.) Using LCD Display

If you have an LCD display, then you can use two push-buttons inputs 1o
change the Set Values (SV) of any selected timers or counters with visual
feedback.

Al-5

Assignment:

e Press push-button “Increase” increment the SV of timer #1 by 0.5s. The
upper limit for timer #1 SVis 10s (SV <=100)

e Press push-button "Decrease” decrement the SV of timer #1 by 0.5s

e Press “test” button furns ON output #1 for a duration given by timer #1
and then turns it OFF.

Increase Fn_#101
| | [dCusf]
Decirtlease Fn_ #102
] |
— | [dCusf]
Test Timl Outl
,'V (OUT)
outl Timl
L (TIM)

Custom Function #101

Z = getTimerSV(1l)

IF Z > 100 RETURN: ENDIF ‘ MAXIMUM 10s

setTimerSV 1, Z+5 “Increase the current SV by 5 (0.5s)
SETLCD 1,1,”T1-SV="+STR$(getTimerSVv(l),4)

Custom Function #102

setTimerSV 1,getTimerSV(1l)-5 ‘Decrease SV by 5
SETLCD 1,1,”T1-SV="+STR$(getTimerSV(1l),4)

Comments:

The getTimerSV(1) function returns the current set value of the Timer #I. This
value is read into variable Z in CusFn #101 but used directly in CusFn #102 for
changing the Set Value of Timer #1. The setTimerSV statement uses the value of
its second argument to update Timer #1’s SV accordingly.

Note that changes to the set value SV will be updated in the program EEPROM
memory and is non-volatile. However, EEPROM has a typical life-span of about
100,000 to 1,000,000 erase-write cycle. Exceeding this limit will “wear out” the
EEPROM and resulting in a read error when the PLC operates. Hence, you should
NEVER write a program that excessively changes the set value of the timer or
counter (e.g. put it in a non-differentiated form of [CusFn] which executes every
scan of the ladder program and continuously changes the content of the EEPROM).

Al-6

3. Using a Potentiometer As An Analog Timer

A cheap potentiometer can be connected to the PLC A/D input and
provide a user-adjustable “knob” as an analog “Set Point” input device. A
scale can be drawn around the potentiometer 10 provide visual indication
of set point value.

Assignment:

e A potentiometer is connected to A/D #5. Use it to provide a timing
range of O to 10.00 seconds.

e Pressing the “test” input furns ON outfput #1 for a duration determined
by the potentiometer reading, after that tuns output #1 OFF.

Test Fn #10
i | [dCusf]
Test Timl Outl
/H’ (OUT)
out1 Timl
— (TIM)

Custom Function #10

HSTIMER 1 ‘ Define Timer #1 as High Speed Timer (0.01ls base)
TimerPV[1] = ADC(1)*1000/4096 ° Set the timer running with
‘ value proportional to A/D value.

Comments:

To take full advantage of the resolution of the A/D converter, the timing range of 0-
10 seconds is more finely divided when timer is defined as high-speed timer using
the HSTIMER command. The time base is now 0.01s. This means that for maximum
value of 10.00s, the timer should count down from 1000.

The next statement in CusFn #10 computes the ratio of the A/D input with respect to
its full scale value of 4096 and multiplies it to the maximum timing value of 1000.
Le., if the potentiometer wiper is at half way, the A/D reading will be around 2048,
the computation will results in a timing value = 2048*1000/4096 = 500, or 5.00
second. Note that TRILOGI 6.x does not support floating-point arithmetic. Hence
the multiplication must be carried out before the division. Otherwise, if you
compute 2048/4096 *1000, the result of the integer division of 2048/4096 = 0 and
the whole expression yields a ‘0’°, which is clearly wrong!

The timer #1’s Present Value (P.V) register is loaded with this number, which will
start the timer countdown. In the next logic rung, the timer coil connected to the
latched “OUT1 " is necessary to prevent the timer from resetting itself. But It will
not overwrite the PV with its own Set Value (SV), which will not be used at all in
this case. This is because the previous ladder program has already started the timer
with a value determined by the position of the potentiometer “knob”.

Al-7

4. Motion Control of Stepper Motor

The M-series PLC can generate pulses to feed to stepper motor driver. The
maximum speed, acceleration, deceleration and total numibber of pulses
to generate are definable using TBASIC. Both absolute positioning
commands and relative move commands are supported.

Assignment:

e A "DEFHOME" input define the current location as home position.

e Press the "START” input to begin Indexing the stepper motor to position at
1500, -2000, 4500 and 2000 steps with respect to the HOME position.
Pause for 1 seconds at each position. Return to home at the end of the

cycle.
e Maximum speed = 5000 pps, Acceleration=100 steps to full speed.
DEFHOME Fn_#10
[dCusf]
START Fn_#11
[dCusf]
RLY5 Tlsec
(TIM)
Tlsec Fn_{t20
[dCusf]
Custom Function #10
STEPHOME(1) ‘Define the HOME position for stepper 1
Custom Function #11
DM[1] = 1500: DM[2]= -2000: DM[3]1=4500 ‘Store index position
DM[4]1=9000: DM[5]1=0
N=1
STEPSPEED 1, 5000,100 ‘Stepperl: Max 5000pps, Acc:100
STEPMOVEABS 1, DM[N], 5 ‘ Move to position stored in DM[1]
‘ at the end, turns ON relay 5
Custom Function #20
N = N+1
IF N <=5
STEPMOVEABS 1, DM[N], 5 “‘Move to next position in DM[N]
ENDIF ‘ at the end, turns ON relay 5
Comments:

RLYS is the label for internal relay #5. T1sec is a timer with preset value of 10. At
the end of the pulse generation, RLYS will be activated. Ladder logic senses RLY5
and executes the T1sec timer to cause a 1 second delay, after which custom
function #20 is executed which triggers another STEPMOVEABS command and the
process repeats for the other four indexing positions.

Al-8

Activate Events at Scheduled Date and Time

All M-series PLCs have built-in Real Time Clock which keeps frack of Date
and Time and can be used 1o activate events at scheduled fime.

Assignment:

Every day turn on output #1 (label name: Outl) at 19:00.
Turn OFF output #1 at 7:00

On Tst Jan 2000 at 12:00 turn ON output #35.

On the same day at 18:00 turn OFF output #5

T1m3@5 Fn_#1
| | [dCusf]
Tim30s Tim30s
4 (TIM)
Custom Function #1
IF TIME[1]=19 AND TIME[2]1=0 ‘ Hour hand at 19
SETIO OUT1 ‘ Minute hand at 00
ELSE
IF TIME[1]=7 AND TIME[2]=0
CLRIO O0OUT1
ENDIF
ENDIF

IF DATE[1]1=2000 AND DATE[Z2]1=1 ‘Jan, yr 2000
IF DATE[3]=1
IF TIME[1]1=12 SETBIT OUTPUT[L1]1,4:ENDIF
IF TIME[1]1=18 CLRBIT OUTPUT[1],4:ENDIF

ENDIF
ENDIF

Comments:

1. Tim30s should have a Set Value = 300 and it activates Function #I every 30
seconds. It is not necessary to check the clock too often as checking consume
CPU execution cycles.

2. We used SETIO to control Output #1, but as a demonstration we use SETBIT to
control Qutput #5 which is bit #4 of the variable OUTPUT[1]. The statement
SETBIT outputl1],4 turns ON output 5.

3. Actually it may not be necessary to check the minute hand since when the RTC

turns from 18:59 to 19:00, the output will be turned ON as long as
TIME[1]=19. Only when TIME[1]=7, then output #1 needs to be changed.

Al-9

6. HVAC (Heating, Ventilation and Air-Conditioning) Control

Assignment:

e Read desired temperature setting (S) from a potentiometer connected
to A/D #5.

e Read current air temperature (T) from sensor aftached to A/D #1 (T)

e Tum ON cold air-conditioner (output #1 with labelname: OUT1)
if T > S bymorethan 1.5°C.

e Turn ON heater if (output #2)
if S > Ty more than 1.5°C.

e Turn OFF both heater and cold air-conditioner if T is within + 1.5°C of S.

Parameters

Full scale A/D is 4096.
Range of Set Point: A/D #5 =0 = 16.0°C
AD #5 =4096 = 30.0°C

Range of Sensor: ADC#1 =0 = -10.0°C
ADC#1 = 4096 = 50.0°C

Clk:1.0 Fn_#20
— | [dCusf]
Custom Function #20

ADC(5)*(300-160)/4096 +168 ‘Convert to °Cx10
ADC(1)*(500+100)/4096 -10@ ‘Convert to °Cx1@

S
T

IF S -T > 15

SETIO OUT1 ‘Cold Air-conditioning ON
ELSE

CLRIO OUT1 f“if T is hotter by 1.5 °C
ENDIF

IF S-T < -15

SETBIT OUTPUTL1],1 ‘ Heater ON
ELSE

CLRBIT OUTPUT[1],1 ‘if T is colder by 1.5 °C
ENDIF

Comments:

Since TRILOGI Version 6.x does not support floating point computation, in order
to handle decimal value (+1.5° C) in this application we use a unit integer to
represent 0.1 quantity. All temperature readings are x10 times. Hence 16.0°C is
represented by 160, -10.0°C is represented by -100. This method, known as fixed-
point computation is quite commonly used in industrial control program.

Al-10

7. Closed-Loop PID Control of Heating Process

A/D#5 D/A #1
PID Burner
Controller
A/D#1
Sensor

E.g. Implementing Closed-loop Digital Control with
PID computation function

PID Controller Transfer Function:

G(s) =Kp+ % +Kps
1
Proportional Band
1

Kp = Proportional Gain =

K; = Integral Gain = Integral Time Constant

Assignment:

Read desired set-point temperature from a potentiometer
connected to A/D #5 (S) with temperature range between 50 °C -
200°C

Measure the process temperafure from a thermocouple + signal
conditioner attached to A/D #1(T)

Compute the Error = S - T. Apply Proportional + Integral + Derivative
(P.1.D) algorithm to compute output X.

Apply output X to Digital-to-Analog converter D/A #1 to control a
variable position valve that feed fuel 1o the flame.

Sample and compute every 1 second.

Full scale A/D range is 4096.

Range of Set Point: A/D #5 = 0= 50°C

A/D #5 =4096 = 200°C

Range of Sensor: ADC#1 =0= 0°C

ADC#1 = 4096 = 300°C

Al-11

Def_PID Fn_#5
[dCusf]

CTlkl.0@s Fn_#6
[dCusf]

Custom Function #5

P =500: I =50: D =20
PIDDEF 1, 2048x10@8 ,P,I,D ¢ Use PID Engine #1, max limit
¢ = +/- 50% of full scale

Custom Function #6

S = ADC(5) * (200-50)/4096 + 50 ‘Convert to °C

T = ADC(1) * (300 - 0)/4096

X = PIDcompute(l, S - T)/100 + 2048 ‘X can vary + 50%

setDAC 1, X ‘ Write to analog D/A output #1
Comments:
1. We use two decimal places to represent the gains Kp, K;and Kp Each integer

unit represents 0.01. Proportional gain Kp = 5 is represented by variable P =
500. Likewise, Integral gains K; = 0.5 is represented by I = 50 and
Differential gains = 0 means Differential term is not used (P.I. only). The
integrator limits of + 2048 for the PIDDEF statement must be multiplied by 100
to be put on the same scale as the P,I and D parameters.

Note that since TRiLOGI does not support floating point arithmetic, the
multiplication _must be carried out before the division. Otherwise, if you
compute 150/4096 *ADC(5), the result of the integer division of 150/4096 = 0
and the whole expression yields a ‘0°, which is clearly wrong!

2. The value returned by PIDcompute () function is then divided by 100 to get the
real value of controller output. PIDcompute() returns a signed value which
can vary from -limit to + limit. We choose the 50% D/A output (4096/2 = 2048)
as the mean control point so that negative values from P1Dcompute () means
D/A output will be < 2048, positive values means D/A output will be > 2048.

Al-12

Appendix 2: PLC & PC Hardware Setup and Configuration

PLC to PC Connection

1. Single PLC to One PC Running TLServer

The simplest configuration will be when there is only one PLC and one
PC involved. You simply connect the PLC's RS232 port to the any of the
RS232 serial port (COM1: to COMS8:) of a PC and run the TLServer on it. If
you use other than COMT1: on your PC, you will need to configure
TLServer's serial port to match the communication port number.

. Multiple PLCs to One PC Running TLServer

You can connect multiple M-series PLCs to a single PC running TLServer
by connecting every PLC's RS485 in a daisy-chain manner to the PC's
RS232 port. You do need to purchase a RS232-t0-RS485 converter (such
as the Autod485 adapter) to connect the PC's RS232 port to the RS485
network. Please refer 1o the PLC's User Manual for details on installation
issues regarding electrical specifications and termination requirements
when connecting the PLCs on an RS485 network.

Internet TRILOGI can log-in to the TLServer and have immediate access
to all the PLCs on the RS485 network just by specifying the ID address of
the PLC concerned. Up to 32 standard M-series PLCs can be networked
to a TLServer. If you replace the RS485 driver IC by a 1/8 power type
you can link up to 256 PLCs to a single TLServer for programming and
monitoring!

+9V
Twisted -pair RS485 network cable 560 Terminating
1200
RS485
+ = oV
Host Computer with T100MD+ T100MX+ T28H-Relay
RS-485 or RS485 RS485 RS485
M-series PLC

Networking Issues

The networking method used by the PC running the TLServer, as well as
how the TRILOGI client software accesses the TLServer will have impact on
the configuration of both the TLServer and the TRILOGI client. We will
consider various scenarios below.

A2-1

1. TLServer and TRiLOGI Client On Same PC.

When both TRILOGI client and TLServer runs on the same PC, we calll this
a “localhost” access and you can use the IP Address: 127.0.01:9080 to
login to TLServer. Localhost access is always available regardless of
whether this PC has any network connection to LAN or the Internet.

Note that If your PC has no network connection, then TLServer will report
this localhost IP address on its front panel. However, if the PC is
connected to the Intermet or a LAN you will see different IP addresses.
Rememiber that even if TLServer does not report 127.0.0.1, it is always
available for localhost programming. You can either run the TRILOGI
Application directly or you can open up your web-browser and key in
the following URL: http://127.0.0.1:9080. In the latter case, you are
running TRILOGI as an applet that is loaded from the TLServer.

3 Internet TRILOGI Home Page - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

<JZI - @ @ £ [htmeff127.0.0.10080f | v @ Go |[GL

) TRI-PLC |) Banks | | Kal8 [| DigitalR5 - Client Portal |) Others

Internet TRILOGI Version 6.0
Copyright {c) 2001-2005 Trangle Research International, Inc

Menu Item Description
Run the Internet TRILOGI directly off your browser. Mo Laocal

2. TLServer has Direct Connection to the Internet

If the PC running the TLServer enjoys a direct connection to the Internet
via dial-up, DSL, T1 line or cable modem, then TLServer will be
accessible 1o any client on the Internet. Note that if you connect to the
Internet via dial-up connection, then do rememiber to connect 1o the
Internet before you run TLServer so that it can report the actual IP
address on its front panel.

If the TRILOGI client software also accesses the Intermnet via direct
connection, you will have the least problem. However, if the TRILOGI
client is sitting behind a corporate firewall, then the situation is much
more complex and it has impact on both the TLServer and the TRILOGI
settings, as shown in the following table:

TRILOGI Client has Direct TRIiLOGI runs on a PC protected
Internet Connection by Corporate Firewall
« TLServer:: port settings=80 or « TLServer: Port Settings = 80
any value above 1024 « TRILOGI: "Use H.H.pPrOXyn —
o TRILOGI: "Use HttpProxy" frue. May need to obtain
setting is optional proxy server's IP address.

A2-2

3. What Happens when a Client is behind a firewall but the TLServer
has direct link to the Internet?

If the client PC is located within a corporate Intranet and protected by a
firewall, then there are very limited means for the client to access the
Interet outside of the firewall. Note that NOT all PCs within the LAN have
access to the Internet. Whether a PC has access to the Internet or not is
decided by your company's System Administrator.

Even if a particular client PC does have access to the Intemnet (because
you are able to use a browser to visit Google!), it doesn't mean that the
PC has a direct connection to the Internet, What may actually happen
is that the network administrator could have setup a "Proxy Server' that
will intercept your client PC's request to link to the Internet. The proxy
server is the one that actually has a direct link to the Internet. It acts on
behalf of the client within the Intranet to process HITP connection 1o the
Internet and passes the response data to back to the client.

So how does the proxy server determine whether a network packet is
meant for the Internet and not meant for another workstation within the
Intranet? It determines it by examining the port numiber that the packet
attempts to connect to. If a connection is made to the well-known HTTP
port which is = 80, it will be handled by the proxy server. If you use a
port number such as 9080 (default TLServer port address) it may think
that the connecftion is to be made to some local workstation and
hence will not direct the packet via the proxy server to the Internet.

Therefore, in order for the client to make connection to the Intermnet via
the proxy server, the TLServer port address should be set to 80. In
addition, the TRILOGI client should also be configured to access the
TLServer via a "Http Proxy Server" as described in the document "Log-In to
TLServer",

4. TLServer and TRILOGI On The Same Local Area Network

If the TLServer is running on a workstation that is part of a local area
network, it is unlikely that the workstation will have a direct connection to
the Infernet (unless the System Administrator has deliberately configured
it for that purpose). When the TLServer starts, it will report the IP Address of
the workstation which is the Infranet IP address and NOT the Internet IP
address.

Now if the TRILOGI client is running on another workstation which is also
part of the same local area network, then it is quite simple: TLServer can
be assigned any unused port number above 1024 and the TRILOGI
client can access TLServer from any other workstations. However, avoid

A2-3

setting TLServer to port 80 since by default, port 80 is for accessing the
Internet via the HTTP proxy server.

. How to access TLServer running on a Private LAN from the Public
Internet?

If the workstation that TLServer is running on does not have a direct
Internet connection 1o the Internet, then it will normally not be possible
to access the TLServer via the public Internet since the firewall will block
any aftempts 1o access a PC inside the LAN. There are two possible
ways to overcome this:

1. Consult your System Administrator to configure a Network Address
Translator that will assign you a public IP Address that will be mapped
to the local workstation that runs the TLServer.

2. If yourneed to provide connectivity from the Intemnet is only
temporary (e.g. allowing your contractor to fix a software bug) it may
be easier 1o use a modem and dial-up to an ISP when the need
arises. Once the connection is No longer needed, just hang up the
modem. However, before you do this, please check with your
company's System Administrator to make sure that you are not
violating the security policy. If that is a problem, you may consider
using a standalone notebook computer or PC (i.e. not connected to
the LAN) to make the dial-up connection, which provides temporary
Internet connectivity for the TLServer (and hence the PLCs) but will not
compromise the security of your corporate Intranet.

. Home Networking Type Routers

If your workstation shares an Internet connection via a low cost NAT
router (these are getting very popular nowadays with home networking
suppliers such as Linksys, NetGear, etc), your TRILOGI client should not
have much problem accessing a remote TLServer since these routers
typically do not forbid your workstation from making direct outgoing
connection to the Internet.

However, by default most NAT router's built-in Firewall will block any
incoming attempt to access the TLServer. Fortunately, you should be
able fo configure the router to perform what is known as “Port
Forwarding” — i.e. to forward any external TCP/IP packets that are
destined to a certain port number 1o a designated workstation on the
home network. In that case, you should configure your router to forward
port number 2080 to the PC that runs the TLServer (assuming the TLServer
is configured for port 2080). Please refer to your router's help manual for
details.

A2-4

Appendix 3: PLC-to-Modem Communication Setup

A remotely located M-series PLC can be connected to a host PC via
public-switch telephone network (PSTN), radio or cellular phone network. This
can be accomplished by using two analog modems, one connected to
the PLC's RS232 serial port, and another modem connected to the remote
host PC as follow:

Public COMM 1
Telephong R5232
M et Ok \
Host i
[Modem|—v 7 .] TioomD

I
Internal or . Extemal T100M:

There are a some technical issues that need to be handled carefully in
order to successfully implement the modem-linked host communications
as described in the following sections.

1. Modem Connection
Modem 1: The host PC may use any internal or external modem that
can communicate at 2400 bps or faster, Connect the modem to the

PC as instructed in the modem’s manual and connect the phone line to
the phone jack on the back of the modem marked "WALL" or "Line".

DB9 Male DB25 Male Female

DB25
2 2 socket
3 3
ToPLC | 4 4[20 MODEM
COMMT "6 With DB25
(Female) 5 7 socket
4
5

Modem 2: The modem to be aftached to the PLC (modem?2) must be
an external modem with an RS232 connection port. Since modem are
DCE type device, they most likely come with a female type DB25 or

A3-1

DBQ socket meant for plugging into the PC’s RS232 port. Since the PLC's
host link port is also a female DB?, we need to construct a DB?-male-to-
DB25-male cable or DB?-male-to-DB?-male cable to link the PLC to the
modem, as follow:

DB9 Male DB9 Male Female DB9
2 2 socket
3 X 3 MODEM
To PLC 4 4)
COMM1 | g T——e with EBtg
{Female) 5 5 SOt
i
8

. Communication Speed

When communicating via modems, there are two different definitions
of communication speeds that you should be aware of:

e The "DIE Speed' or 'line rate" is the serial communication speed
between the modem and the device connected to its RS232 port.
Most modems can automatically detect the RS232 speed of the
device and can assume any speed from 1200, 2400 all the way to
115,200 bps. The first ASCIl character they receive from the device
will determine the DIE speed that the modem will use f1o
communicate with the device.

e The "modem-to-modem communication speed" is what you read
on the modem specifications, such as 33.6Kbps, 56Kbps etc. When
two modems are connected, they automatically negotiate for the
best speed to communicate between the two of them based on
the quality of the phone connection and the maximum speed that
both modems are able to achieve. We usually have no control of
what speed they choose 1o communicate. But one thing is for sure,
which is that the modem-to-modem speed is always lower than the
DTE speed.

Since the default communication baud rate of the M-series PLC's RS232
serial port is 38,400 bps, the PLC should send a modem initialization
string o the modem on the first scan pulse so that the modem can
recognize its default DTE speed (i.e. 38,400 bps) in order to talk to the

A3-2

PLC. E.Q. To reset the modem, you just have to send an ASCII string "ATZ"
to the modem using the following TBASIC command:

PRINT #1 "ATZ"

If you want your modem to automatically answer 1o an incoming call
(e.g. using TLServer 2.x/3.x modem dialing capability), then you should
execute the following TBASIC statement:

PRINT #1 "ATSO=1"

The above statement will tell the modem to answer on first ring, you can
also change the numlber 1 fo other numbers, E.Q. if ATSO=3 it will answer
on the 3 ring of the phone.

. Software and Programming

The TLServer 3.0, which is part of the Internet TRILOGI 6.x software suite,
already includes built-in support for dialing a modem. Hence if you are
using the PLC in passive answer mode only, all the PLC needs to do is to
send a modem initialization string "ATSO=1" using the "1st.Scan" pulse to
put the modem in auto-answer mode whenever the PLC is powered up.
The PLC does not need to issue any more commands to the modem.
Whenever a user wants 1o communicate with the PLC, he/she will first
use the TLServer to dial and connect to the PLC's modem and when the
connection is established, he/she will then e able to use the TRILOGI
client or the TRi-Excellink program to communicate with the PLC. The
fact that the PLC is connected via modem and not via direct RS232 is
totally fransparent to the client programs. To prevent unauthorized
access to the PLC, you may need to use the TBASIC command
"SETPASSWORD" 1o set a protective password.

The great flexibility of the M-series PLCs becomes even more apparent
when you readlize that you can easily program the PLC to automatically
dial in to the TLServer to perform a number of tasks, such as using the
PLC's File Service to save or append data to hard disk files, send email
to anyone via the Intemet or even synchronize its real time clock with the
host PC!

A number of examples have been included in the
"C:\TRiLOGI\TL6\usr\samples\FileService_Modem" folder when you
installed TRILOGI version 6.x. All these examples make use of a powerful
yet easy to use custom function that was writfen entirely using the
standard TBASIC commands (see source code listing in the fext box
pbelow). You only need to create the following simple ladder circuit to
use this function (assuming it is function #10):

A3-3

D$ = "ATDT*8@2" ' store the phone number
IF TESTIO(Connected) THEN ' already connected.
IF TESTIO(DialModem)=@ ' connection no Tonger needed

IF DM[3991]1=0 " used as timer for modem attention.
PRINT #1 " clear serial-out buffer.
WHILE INCOMM(1)<> -1 ' clear whatever data in serial-in
buffer
ENDWHILE
ELSE
IF DM[3991]=5
PRINT #1 "+++"; 'get modem attention
ELSE
IF DM[3991]1>=10 'Wait 5 second to gain attention.
PRINT #1 "ATH" 'hang up modem command.
CLRIO CONNECTED
DM[3991]1=0
ENDIF
ENDIF
ENDIF
DM[3991]1=DM[3991]+1 "increment the timer
ENDIF
RETURN
ENDIF

IF TESTIO(dialModem)=@ RETURN: ENDIF
" If DM[3994] > @ it means a dialing action has started.
If DM[3990] > 30 it means more than 30 seconds has passed
' and connection still not established, then retry.
IF DM[39901=0 ' Use this DM as a flag
WHILE INCOMM(1)<> -1 ' clear whatever data in serial buffer first.
ENDWHILE
PRINT #1 D$ ' Dial the number
DM[39901=1
RETURN
ENDIF
A$ = INPUTS$(1)
IF LENCAS$) = 0
DM[399@]1=DM[3990]+1 " also use it to track the time-out
IF DM[3990] = 28 ' 28 seconds has Tapsed.
PRTNT #1 "ATH"

A3-4

ENDIF
IF DM[399@]>=3@: DM[3990]1=@: ENDIF
RETURN
ENDIF
SETLCD 4,1,A$
IF STRCMP(MID$(A$,2,7),"CONNECT")=@ ' 1is connected

DM[399@4]1 = @ " for next round of connection

DM[3991]1 =0 " reset timer for hang-up modem use

SETIO Connected ' set an I/0 bit to indicate connection
ENDIF

All you need to do is to copy and paste this custom function to your own
Ladder+BASIC program, then create an |/O with label name "DialModem" —
this may be an input, output, relay, timer or counter contact. The moment this
I/O bit "DialModem" is turned on, the PLC will begin to execute the sequence
of dialing the remote modem, waiting for a successful connection and then
turning on an I/O bit with the label name "Connected". If the dialing cannot be
completed within 30 seconds, this custom function will hang up and then re-
dial. The process will be repeated indefinitely until either a successful
connection is made or if the "DialModem" i/o has been turned OFF.

To disconnect from the modem (hang up), your PLC program just have 1o tumn
off the "DialModem" I/O bit and the abovementioned custom function will
automatically perform the action of hanging up the modem.

Note: Since the PLC does not have a carrier detect (CD) connection to the
modem, therefore if the connection is lost after a successful initial connection,
the PLC would have no way of knowing it immediately. Your program would
have to detect this condition (e.g. if it sends a file service command and does
not receive a "<OK>" acknowledgement string from the host). Once the PLC
notes that the connection is lost, it can re-establish the connection by simply
tuning off the I/O bit with label name "Connected". (say, by executfing the
"CLRIO Connected" statement). As long as the "DialModem" /O bit is on, the
custom function will re-dial and aftempt to make another connection if it
notices that the "Connected" bit has been turned OFF for whatever reason.

A3-5

Copyright ©2001 - 2009
Triangle Research International, Inc.
All rights Reserved

